Inferring Internet Server IPv4 and IPv6 Address Relationships

Robert Beverly, Arthur Berger, Nicholas Weaver, & Larry Campbell
Outline

• Introduction

• Opportunistic technique using two-level DNS hierarchy
 • Data set collected by Akamai
 • Active probing using a chain of CNAME’s
 • Applied to sub-set of Akamai data

• Targeted fingerprinting technique using TCP timestamps
 • Applied to Alexa top 100,000 web servers
Introduction

• Sibling Resolution: Given a candidate (IPv4,IPv6) address pair, determine if these addresses are assigned to the same cluster, device, or interface.

• Why?
 • IPv4 and IPv6 expected to co-exist → dual-stacked devices
 • Track IPv6 evolution
 • Measurements of IPv4 vs. IPv6 performance
Opportunistic DNS Technique

DNS Resolver
IPv4
IPv6

First-Level Auth DNS

NS=2001:428::IPv4

A? www.a.example.com

Second-Level Auth DNS

src: IPv6, dst: 2001:428::IPv4

IPv4, IPv6

Pairs
Data Set from Akamai Nameservers

- Six month period from 17 Mar 2012 to 13 Sep 2012.
- 674,000 (v4, v6) pairs.
- 271,000 unique v4 addresses.
- 282,000 unique v6 addresses.
- 213 countries.
Example of Equivalence Classes

IPv4

IPv6
Example of Equivalence Classes

The address pairs partition into 4 equivalence classes:

- two are 1-1
- one is 2-1
- one is 1-4

Will focus first on equivalence classes that are 1-1
Example of Equivalence Classes

- 2 of the 4 equivalence classes (50%) are 1-1.
- 4 of the 12 addresses (33%) are 1-1.
- 2 of the 8 address pairs (25%) are 1-1.
Prevalence of 1-1 equivalence classes

<table>
<thead>
<tr>
<th>Data Set</th>
<th>Num of pairs</th>
<th>% of eq cls that are 1-1</th>
<th>% of v4+v6 in 1-1 eq cls</th>
<th>% of pairs in 1-1 eq cls</th>
</tr>
</thead>
<tbody>
<tr>
<td>Addresses</td>
<td>674,000</td>
<td>77%</td>
<td>34%</td>
<td>14%</td>
</tr>
<tr>
<td>Example</td>
<td>8</td>
<td>50%</td>
<td>33%</td>
<td>25%</td>
</tr>
</tbody>
</table>
Prevalence of 1-1 equivalence classes

<table>
<thead>
<tr>
<th>Data Set</th>
<th>Num of pairs</th>
<th>% of eq cls that are 1-1</th>
<th>% of v4+v6 in 1-1 eq cls</th>
<th>% of pairs in 1-1 eq cls</th>
</tr>
</thead>
<tbody>
<tr>
<td>Addresses</td>
<td>674,000</td>
<td>77%</td>
<td>34%</td>
<td>14%</td>
</tr>
<tr>
<td>Aggregate to prefixes (before)</td>
<td>238,000</td>
<td>67%</td>
<td>31%</td>
<td>18%</td>
</tr>
<tr>
<td>Aggregate to prefixes (after)</td>
<td>260,000</td>
<td>83%</td>
<td>55%</td>
<td>39%</td>
</tr>
<tr>
<td>Example</td>
<td>8</td>
<td>50%</td>
<td>33%</td>
<td>25%</td>
</tr>
</tbody>
</table>
Prevalence of 1-1 equivalence classes

<table>
<thead>
<tr>
<th>Data Set</th>
<th>Num of pairs</th>
<th>% of eq cls that are 1-1</th>
<th>% of v4+v6 in 1-1 eq cls</th>
<th>% of pairs in 1-1 eq cls</th>
</tr>
</thead>
<tbody>
<tr>
<td>Addresses</td>
<td>674,000</td>
<td>77%</td>
<td>34%</td>
<td>14%</td>
</tr>
<tr>
<td>Aggregate to prefixes (before)</td>
<td>238,000</td>
<td>67%</td>
<td>31%</td>
<td>18%</td>
</tr>
<tr>
<td>Aggregate to prefixes (after)</td>
<td>260,000</td>
<td>83%</td>
<td>55%</td>
<td>39%</td>
</tr>
<tr>
<td>Restrict to last week and aggregate to prefixes (after)</td>
<td>49,000</td>
<td>92%</td>
<td>83%</td>
<td>75%</td>
</tr>
<tr>
<td>Aggregate to AS’s (after)</td>
<td>55,000</td>
<td>95%</td>
<td>92%</td>
<td>89%</td>
</tr>
<tr>
<td>Example</td>
<td>8</td>
<td>50%</td>
<td>33%</td>
<td>25%</td>
</tr>
</tbody>
</table>
Heat Map of all equivalence classes
Complementary Distributions

The graph shows the relationship between the number of IPv4 and IPv6 addresses/prefixes/AS's in equivalent class and the percent of addresses/prefixes/AS's. The full data set is represented by a red line. The x-axis represents the number of IPv4 and IPv6 addresses/prefixes/AS's in equivalent class, ranging from 3 to 10,000. The y-axis represents the percent of addresses/prefixes/AS's, ranging from 0 to 70.
Complementary Distributions

40% of the address are in equiv. classes of size at least 30

percent of addresses/prefixes/AS's

full data set

number of v4 + v6 address/prefixes/AS’s in equiv. class

0 10 20 30 40 50 60 70

3 5 10 30 100 300 1000 3000 10000
Complementary Distributions

34% of addresses in equiv. class of size 2

66%

y intercepts repeat column from prior table
Complementary Distributions

- Full data set
- Aggregate to prefixes before
- Aggregate to prefixes (after)
- Restrict to final week, aggregate to prefixes (after)
- Aggregate to AS's (after)

Graph showing the percentage of addresses/prefixes/AS's on the y-axis against the number of v4 + v6 address/prefixes/AS's in equivalent class on the x-axis.
Outline

• Introduction

• Opportunistic technique using two-level DNS hierarchy
 • Data set collected by Akamai
 • Active probing using a chain of CNAME’s
 • Applied to sub-set of Akamai data

• Targeted fingerprinting technique using TCP timestamps
 • Applied to Alexa top 100,000 web servers
Illustration of Active Probing Technique

dig TXT @8.8.8.8 cname1e6464.nonce.v6.dnstest.icsi.berkeley.edu

"Domain controlled by N. Weaver"
Illustration of Active Probing Technique

dig TXT @8.8.8.8 cname1e6464.noncenonce.v6.dnstest.icsi.berkeley.edu

"The NS record has glue that is only a AAAA"
Illustration of Active Probing Technique

dig TXT @8.8.8.8 cname1e6464.nonce.v6.dnstest.icsi.berkeley.edu

CNAME
cname2e6464.nonce.2607yf8b0y400dyc02yy16e.v4.dnstest.icsi.berkeley.edu.

"Encoding of 2607:f8b0:400d:c02::16e"
Illustration of Active Probing Technique

dig TXT @8.8.8.8 cname1e6464 nonce v6 dnstest.icsi.berkeley.edu

CNAME
cname2e6464 nonce 2607yf8b0y400dyc02yy16e v4 dnstest.icsi.berkeley.edu.

CNAME
cname3e6464 nonce 2607yf8b0y400dyc02yy16e 74x125x176x45 v6 dnstest.icsi.berkeley.edu.

Encoding of 74.125.176.45
Illustration of Active Probing Technique

dig TXT @8.8.8.8 cname1e6464.nonce.v6.dnstest.icsi.berkeley.edu

CNAME
cname2e6464.nonce.2607yf8b0y400dyc02yy16e.v4.dnstest.icsi.berkeley.edu.

CNAME
cname3e6464.nonce.2607yf8b0y400dyc02yy16e.74x125x176x45.v6.dnstest.icsi.berkeley.edu.

CNAME
txt.nonce.2607yf8b0y400dyc02yy16e.74x125x176x45.2607yf8b0y400dyc02yy168.v4.dnstest.icsi.berkeley.edu.
Probe of GoogleDNS anycast address

dig TXT @8.8.8.8 cname1e6464.nonce.v6.dnstest.icsi.berkeley.edu

CNAME
cname2e6464.nonce.2607yf8b0y400dyc02yy16e.v4.dnstest.icsi.berkeley.edu.

CNAME
cname3e6464.nonce.2607yf8b0y400dyc02yy16e.74x125x176x45.v6.dnstest.icsi.berkeley.edu.

CNAME
txt.nonce.2607yf8b0y400dyc02yy16e.74x125x176x45.2607yf8b0y400dyc02yy168.v4.dnstest.icsi.berkeley.edu.

TXT
"nonce" "2607:f8b0:400d:c02::16" "74.125.176.45" "2607:f8b0:400d:c02::168" "74.125.176.32"
Data Set from Active DNS probing

- Determined the open resolvers in the passive-DNS data set:
 - 6,581 v4 and 2,658 v6 addresses
- Probe each 32 times in 2 hours on Sept 14, 2012.
- Each 4-tuple of v4/v6/v4/v6 yields either 1, 2, or 4 (v4, v6) address pairs.
Complementary distribution of the open resolvers, indexed by number of probes
Outline

• Introduction

• Opportunistic technique using two-level DNS hierarchy
 • Data set collected by Akamai
 • Active probing using a chain of CNAME’s
 • Applied to sub-set of Akamai data

• Targeted fingerprinting technique using TCP timestamps
 • Applied to Alexa top 100,000 web servers
Targeted, Active Technique

- Note that IPv4 and IPv6 share a common transport-layer (TCP) stack.
- Leverage prior work on physical device fingerprinting using TCP timestamp clock skew [Kohno 2005]
- Widespread support for TCP timestamps (modulo middleboxes, proxies). Enabled by default.
TCP Timestamp Clock Skew

- TS value: 4 bytes with current clock
- TS clock ≠ system clock
- TS clock frequently unaffected by system clock adjustments (e.g. NTP)
- **Basic Idea:** Probe over time. Fingerprint is clock skew (and remote clock resolution).
- Given a sequence of timestamp offsets, use linear programming to obtain a line that minimizes distance to points, constrained to be under data points. [Moon, 1999]
Control test on known distinct machines

- Host A (IPv6) Δ
- Host B (IPv4) +

\[\alpha = 0.029938 \quad \beta = -3.519 \]
\[\alpha = -0.058276 \quad \beta = -1.139 \]
Control test on known common machine

observed offset (msec) vs. measurement time (sec)

Host A (IPv6) △
Host A (IPv4) +

α=-0.058253 β=-1.178
α=-0.058276 β=-1.139
Inferred clock skew to

www.socialsecurity.gov
Sibling Inference at Alexa Websites

- Analyze Alexa top 100,000 websites
- Pull A and AAAA records
- 1398 (1.4%) have IPv6 DNS
- Repeatedly fetch root HTML page via IPv4 and IPv6 via deterministic IP address
- Record all packets
- Infer siblings if the angle between the two fitted lines is within 1 degree.
Sibling Inference at Alexa Websites

<table>
<thead>
<tr>
<th>Case</th>
<th>Inference</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>v4 and v6 no timestamps</td>
<td>?</td>
<td>94 (6.7%)</td>
</tr>
<tr>
<td>v4 or v6 (but not both) no timestamps</td>
<td>Non-siblings</td>
<td>101 (7.2%)</td>
</tr>
<tr>
<td>v4 and v6 non-monotonic</td>
<td>?</td>
<td>109 (7.8%)</td>
</tr>
<tr>
<td>v4 or v6 (but not both) non-monotonic</td>
<td>Non-siblings</td>
<td>140 (10.0%)</td>
</tr>
</tbody>
</table>

- Our technique fails when timestamps are not monotonic across TCP flows (e.g. load-balancer or BSD OS)
- Or, when timestamps are not supported (e.g. middlebox)
- But when this occurs for just one of the addresses, can infer non-siblings
Sibling Inference at Alexa Websites

<table>
<thead>
<tr>
<th>Case</th>
<th>Inference</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>v4 and v6 no timestamps</td>
<td>?</td>
<td>94 (6.7%)</td>
</tr>
<tr>
<td>v4 or v6 (but not both) no timestamps</td>
<td>Non-siblings</td>
<td>101 (7.2%)</td>
</tr>
<tr>
<td>v4 and v6 non-monotonic</td>
<td>?</td>
<td>109 (7.8%)</td>
</tr>
<tr>
<td>v4 or v6 (but not both) non-monotonic</td>
<td>Non-siblings</td>
<td>140 (10.0%)</td>
</tr>
<tr>
<td>Clock skew satisfies criterion</td>
<td>Siblings</td>
<td>839 (60.0%)</td>
</tr>
<tr>
<td>Clock skew fails criterion</td>
<td>Non-siblings</td>
<td>115 (8.3%)</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>1398 (100%)</td>
</tr>
</tbody>
</table>

- 25.5% (356) non-siblings
- 43% of skew-based non-siblings are in different ASes
Summary: Characterizing the inter-relation of v4 and v6 among Internet DNS and web servers.

Presented three methodologies:
1. a passive DNS collection using a two-level DNS hierarchy
2. an active DNS probing system using a chain of CNAME’s, and can force resolvers to utilize TCP
3. an active TCP physical device fingerprinting technique that more precisely identifies v4 and v6 addresses present on the same machine.
Summary: Characterizing the inter-relation of v4 and v6 among Internet DNS and web servers.

Presented three methodologies:
1. a passive DNS collection using a two-level DNS hierarchy
2. an active DNS probing system using a chain of CNAME’s, and can force resolvers to utilize TCP
3. an active TCP physical device fingerprinting technique that more precisely identifies v4 and v6 addresses present on the same machine.

We find:
1. significant complexity, as measured by large equivalence classes.
2. 25% of the top Alexa sites that resolve to A and AAAA are non-siblings.

people.csail.mit.edu/awberger/papers/v4_v6_address_relationships.pdf
Additional Slides
Illustration:

$ dig +trace +additional a10.dspg1.akamai.net

Additional Section from First Level Nameserver:

```
n0dspg1.akamai.net. 21600 IN  A   195.59.43.138
a0dspg1.akamai.net. 32400 IN  AAAA 2001:5000:402:f000:2b85:c412:8ce4:c418
n5dspg1.akamai.net. 32400 IN  A   23.3.10.154
n3dspg1.akamai.net. 43200 IN  A   23.3.10.150
n2dspg1.akamai.net. 32400 IN  A   193.108.88.193
n1dspg1.akamai.net. 43200 IN  A   61.213.146.8
n4dspg1.akamai.net. 21600 IN  A   66.171.230.14
```

Encodes the IPv4 source address of the incoming DNS query
Illustration:

```bash
$ dig +trace +additional a10.dspg1.akamai.net
```

Additional Section from First Level:

<table>
<thead>
<tr>
<th>Domain</th>
<th>Type</th>
<th>TTL</th>
<th>IPv4 Address</th>
<th>IPv6 Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>n0dspg1.akamai.net</td>
<td>IN A</td>
<td>21600</td>
<td>195.59.43.138</td>
<td></td>
</tr>
<tr>
<td>a0dspg1.akamai.net</td>
<td>IN AAAA</td>
<td>32400</td>
<td>2001:5000:402:f000:2b85:c412:8ce4:c418</td>
<td></td>
</tr>
<tr>
<td>n5dspg1.akamai.net</td>
<td>IN A</td>
<td>32400</td>
<td>23.3.10.154</td>
<td></td>
</tr>
<tr>
<td>n3dspg1.akamai.net</td>
<td>IN A</td>
<td>43200</td>
<td>23.3.10.150</td>
<td></td>
</tr>
<tr>
<td>n2dspg1.akamai.net</td>
<td>IN A</td>
<td>32400</td>
<td>193.108.88.193</td>
<td></td>
</tr>
<tr>
<td>n1dspg1.akamai.net</td>
<td>IN A</td>
<td>43200</td>
<td>61.213.146.8</td>
<td></td>
</tr>
<tr>
<td>n4dspg1.akamai.net</td>
<td>IN A</td>
<td>21600</td>
<td>66.171.230.14</td>
<td></td>
</tr>
</tbody>
</table>

Resolution of domain:

<table>
<thead>
<tr>
<th>Domain</th>
<th>TTL</th>
<th>IPv4 Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>a10.dspg1.akamai.net</td>
<td>20</td>
<td>80.67.64.115</td>
</tr>
<tr>
<td>a10.dspg1.akamai.net</td>
<td>20</td>
<td>80.67.64.116</td>
</tr>
</tbody>
</table>

Encodes the IPv4 source address of the incoming DNS query

Note: protocol version of answer is independent of that used to transport the DNS messages
Active probing to open, recursive resolvers using a chain of CNAME’s

Resolver (w/ IPv6=A1,A3; IPv4=A2,A4)

Prober

c1.N.v6.domain

v6Q? c1.N.v6.domain

CNAME=c2.N.A1.v4.domain

v4Q? c2.N.A1.v4.domain

TXT="A1 A2 A3 A4"

domain Auth DNS
Complementary distribution of the open resolvers

- 32 probes, aggregate to prefixes (after)
- 32 probes, aggregate to prefixes (after)
- aggregate to AS’s (after)
- aggregate to AS’s (after)
Graph of largest equiv. class, aggregated to AS’s.
Timestamp offsets

Let t_i be the time at which the prober observes the i^{th} v4 packet.

Let T_i be the timestamp in the TCP options of the i^{th} v4 packet.

Then the offset of the i^{th} v4 packet $= (T_i - T_1) - (t_i - t_1)$

Likewise for the v6 packets.
Timestamp offsets

Let t_i be the time at which the prober observes the i^{th} v4 packet

Let T_i be the timestamp in the TCP options of the i^{th} v4 packet.

Then the offset of the i^{th} v4 packet = $(T_i - T_1) - (t_i - t_1)$

Likewise for the v6 packets.

Given a sequence of timestamp offsets, use linear programming to obtain a line that minimizes distance to points, constrained to be under data points. [Moon, 1999]