Large Scale IPv6 Alias Resolution

Matthew Luckie
Overview

• IP-ID based alias resolution techniques
 – IP-ID used in reassembly to identify fragments that belong to same packet.
 – Commonly implemented as a counter in IPv4 (and v6)
 – ally
 – radargun / midar

• Problems applying TBT to large-scale alias resolution
 • ~9000 interfaces in set with incrementing IP-ID

• Current status
Overview – Ally

• Pairwise testing of candidate aliases.
 – Does not scale well, but useful to cross validate earlier measurements or confirm near-certain aliases

• Given interfaces X and Y
 – probe X, then Y, then X, then Y, then X
 – If an incrementing sequence of IP-ID values is returned, likely aliases.
Overview – Radargun / MIDAR

• Probe all interfaces in parallel and compute aliases offline.

• Radargun
 – aliases have similar velocities and IP-ID distance is within a fudge factor

• MIDAR
 – (a lot of algorithm to scale to millions of interfaces)
 – aliases return monotonically incrementing IP-ID values from non-overlapping probes
Issues applying Radargun / MIDAR with IPv6

• Need to periodically send router PTBs so it will send fragments with IP-ID

• Need to solicit large responses so the router will fragment
 – IPv6 min MTU: 1280 bytes.
 – IPv4 probes are typically < 40 bytes
 • i.e. 30x smaller
 – Can solicit atomic fragments. TODO item.
Length of time until final IP-ID observation

Frequency

Seconds

10 mins

2 hours
First attempt at radargun prober

• Send PTBs whenever a packet is received without a fragmentation header
 – Do not re-probe address
 – Original probe considered ‘lost’

• 30 one-min rounds
• 1300 byte ICMP echo request packets
• i.e. 300 x 1300 byte pps (390,000 bps)
 – Much higher data rate than if we sent small probes
72% of IP-ID values between 127 and 1000 not a lot of entropy for a 32 bit number.
Very little velocity in IP-ID counter over a 30 minute period

30 rounds – shouldn’t there be bands at increments of 30?
Received responses to half of probes for most addresses!
Second attempt

- Lack of entropy in IP-ID further motivates sequence of non-overlapping probes / responses.
- 10 one-min rounds
 - each round with probe order shuffled
Results

• 2492 pairs with incrementing, non-overlapping IP-ID values

• Probed with ally, 5 probes, 1 sec intervals:
 – 14 not aliases: 0.6% of pairs
 • Rejected with very close IP-IDs, often the same value
 – 173 packet loss (no classification): 7% of pairs
 • Another attempt would enable these to be classified.
 – 2305 aliases: 92.5% confirmed
 • 910 routers, 90% of them with two observed aliases
Reducing packet loss / data rate

• Probe with larger windows?
 – Relies on remote system caching PTB
 – Tried a window of 3 minutes but had half as many candidate aliases. i.e. performed worse.
 • Need to spend time in data figuring out why

• We have ideas for smarter probing given extremely low IP-ID velocity
 – Need to implement and evaluate them.
Applications to IPv4

• http://datatracker.ietf.org/doc/draft-ietf-intarea-ipv4-id-update/
 – Would set IP-ID value only when the packet is fragmented

• Do IPv4 routers that set a constant IP-ID value set a non-constant IP-ID if they have to fragment the response?
Summary

• Not trivial to re-apply IPv4-based IP-ID alias resolution techniques.
 – Data rate required in IPv6 much larger
 – Need to solicit fragments

• Need to try alternative methods: UDP and TCP
 – UDP will require router to accept an ICMP error (PTB) for another ICMP error (port unreach)
 – Both rely on atomic fragments because responses <= 1280 bytes.