

Revisiting AS-Level Graph Reduction

The Eighth IEEE International Workshop on Network Science for Communication Networks

Erik C. Rye*, Justin P. Rohrer+, Robert Beverly+

*US Naval Academy Annapolis, MD +Naval Postgraduate School Monterey, CA

11 April 2016

- Motivation and Prior Work
 - Motivation
 - Prior Work
- 2 Methodology
 - k-core Reductions
- Results
- 4 Conclusions

- Long-standing need to model macroscopic behavior of the Internet
- e.g., at the Autonomous System (AS) level: ISPs as nodes and links as their (complex) interconnection
 - ► Evaluate new routing protocol
 - Understand provider filtering (BCP38, SBGP, etc)
 - ► Active topology mapping (our particular motivation)
- But...
 - Size of entire-Internet AS graph makes emulation infeasible and simulation difficult
 - ▶ Thus, a need for smaller, "representative" Internet models exists
 - ▶ But what is representative?
 - ★ Degree distribution? Clustering? Avg. path len?
 - ► And how?
 - ★ Constructive build graph from ground-up
 - * Reductive begin with AS graph, pare down

- Long-standing need to model macroscopic behavior of the Internet
- e.g., at the Autonomous System (AS) level: ISPs as nodes and links as their (complex) interconnection
 - ► Evaluate new routing protocol
 - Understand provider filtering (BCP38, SBGP, etc)
 - Active topology mapping (our particular motivation)
- But...
 - Size of entire-Internet AS graph makes emulation infeasible and simulation difficult
 - ▶ Thus, a need for smaller, "representative" Internet models exists
 - ▶ But what is representative?
 - ★ Degree distribution? Clustering? Avg. path len?
 - ► And how?
 - ★ Constructive build graph from ground-up
 - * Reductive begin with AS graph, pare down

Our Contribution

- Re-evaluation of prior sampling (reductive) algorithm on multiple modern Internet graphs
- Development of new graph sampling algorithms that out perform existing techniques on modern Internet graphs

- Lots of prior work on Constructive Internet graph generators
- We focus on reduction:
 - Cem et al.— Induced Random Vertex, Random Walk, Random Edge sampling on varied networks
 - ► Vaquero *et al.* Breadth-First Search to reduce backbone AS architecture for end-to-end delay estimation
 - Krishnamurthy, Faloutsos

- Krishnamurthy, Faloutsos, et al..
 - ► Sampling large Internet topologies for simulation purposes
 - ▶ Start with May 2001 AS-level graphs of the Internet
 - ► Data obtained passively, obtained from RouteViews Border Gateway Protocol (BGP) Router Information Base (RIB) dumps
 - ► Reduce these graphs using 16 different methodologies to target reduction order Jan 1998 Internet instance
 - Compare fidelity of reduced graphs to Jan 1998 Internet graph metrics

Use their methodology as a starting point...

- ... but draw from chronologically newer data
- ...expand data sources
- ...and improve with new algorithm

We successfully replicate the results of Krishnamurthy et al.:

- Contraction
 - ► Contract two endpoints of an edge together into new node
 - ► New node retains all edges incident to original two nodes
- Deletion
 - ► Delete randomly selected node or edge
 - ► How we pick edges, in particular, affects resultant topology
- Exploration
 - ▶ Use Breadth/Depth First Search strategies

We consider the same methods, and introduce two novel sampling strategies based on the graph's k-core.

Our approach

- Prior work shows k-cores of the AS-level Internet graph exhibits self-similarity to complete AS-level Internet graph (Alvarez-Hamelin et al., Zhou et al.)
- Implement reduction by computing successive k-cores (until $(k+1)^{st}$ -core contains too few vertices), then either:
 - ► **KDD:** reduce by removing edge incident to random vertex, then delete random edges.
 - ▶ **KKD:** or reduce by removing nodes with degree *k* to meet vertex count, then delete random edges.

- We compare the reduced graphs (of the Jan 1998 Internet order) to the actual Jan 1998 AS-level Internet graph in the following metrics:
 - Average degree
 - ► Clustering, using the 100 largest eigenvalues of normalized adjacency matrix (normalized graph spectra)
 - ► Hop-plot (% of vertex pairs reachable within x hops along a geodesic)
 - ► Degree distribution
- First three metrics studied in prior work; degree dist. added for more fine-grained degree comparison

Dataset	Source	Construction	Time Frame		
RV1	RouteViews	Observed AS_PATH	01/1998 - 05/2001		
RV2	RouteViews	Observed AS_PATH	01/1998 - 12/2014		
CAIDA1	CAIDA ITDK	Traceroute	01/1998 - 05/2001		
CAIDA2	CAIDA ITDK	Traceroute	01/1998 - 12/2014		

	RV1	RV2	CAIDA1	CAIDA2
Avg. Deg	DHYB-0.7	DHYB-0.6	DHYB-0.6	DHYB-0.1
	DHYB-0.8	DHYB-0.6	DHYB-0.7	DHYB-0.2
Spectral	KDD	KDD	DHYB-0.8	KDD
	DHYB-0.7	KKD	DHYB-0.6	KKD
	EDFS	DHYB-0.7	KDD	DHYB-0.1
	DHYB-0.7	EDFS	KDD	DHYB-0.3
Hon Dlot	KDD	DHYB-0.7	DHYB-0.7	DRV
Hop Plot	DHYB-0.8	DHYB-0.6	DHYB-0.6	EDFS
	DHYB-0.6	KDD	DRV	DHYB-0.4
	KKD	KKD	KKD	DHYB-0.1
Dog Dist	DHYB-0.7	KDD	DHYB-0.5	DRE
Deg. Dist.	DHYB-0.6	DHYB-0.5	DHYB-0.4	DRV
	KDD	DHYB-0.6	DHYB-0.6	KKD

	RV1	RV2	CAIDA1	CAIDA2	
Avg. Deg	DHYB-0.7	DHYB-0.6	DHYB-06	DIIVD 0 1	
Spectral	DHYB-0.8	DHYB-0.6	DHYB.	By construction,	
	KDD	KDD	DHYB-	KDD and KKD	
	DHYB-0.7	KKD	DHYB.	match avg.	
	EDFS	DHYB-0.7	KDD	degree exactly	
Hop Plot	DHYB-0.7	EDFS	KDD •	While DHYB	
	KDD	DHYB-0.7	DHYB.	does well, it is	
	DHYB-0.8	DHYB-0.6	DHYB.	sensitive to	
	DHYB-0.6	KDD	DRV	parameterization	
Deg. Dist.	KKD	KKD	KKD •	Our algorithms	
	DHYB-0.7	KDD	DHYB-	perform well	
	DHYB-0.6	DHYB-0.5	DHYB.	w/o parameters	
	KDD	DHYB-0.6	DHYB-U.u	LUD	

- (See paper for full metrics comparison)
- Spectra of KDD closely matches target Internet instance
- What about other time periods and data sources?

- Previous best reduction methods differ considerably across time periods and AS-graph inference methods
 - ▶ DHYB often a good choice, but probability values fluctuate wildly
- Leveraging Internet AS graph properties more promising than random deletion methods
 - k-core-based reduction algorithms consistently in top 4 reduction methods across data sources and time frames
 - ► *k*-core reduction methods match average degree of target graph precisely
- Our implementation is publicly available at https://github.com/cmand/graphreduce

Thanks! Questions?