Primitives for Active Internet Topology Mapping: Toward High-Frequency Characterization

Robert Beverly, Arthur Berger*, Geoffrey Xie

Naval Postgraduate School
*MIT/Akamai

November 2, 2010

ACM Internet Measurement Conference

Internet Topology

Long-standing question: What is the topology of the Internet?

Difficult to answer – Internet is

- A large, complex distributed system (organism)
- Non-stationary (in time)
- Difficult to observe, multi-party (information hiding)
- Poorly instrumented (not part of original design)
 - ⇒ Poorly understood topology (interface, router, or AS level)

Internet Topology

Long-standing question: What is the topology of the Internet?

Difficult to answer - Internet is:

- A large, complex distributed system (organism)
- Non-stationary (in time)
- Difficult to observe, multi-party (information hiding)
- Poorly instrumented (not part of original design)
 - ⇒ Poorly understood topology (interface, router, or AS level)

What is the topology of the Internet?

Why care?

- Network Robustness: to failure, to attacks, and how to best improve. (antithesis – how to mount attacks)
- Impact on Research: network modeling, routing protocol validation, new architectures, Internet evolution, etc.
- Easy to get wrong (see e.g. "What are our standards for validation of measurement-based networking research?" [KW08])

These challenges and opportunities are well-known. We bring some novel insights to bear on the problem.

Our Work

Our focus:

- Active probing from a fixed set of vantage points
- High-frequency, high-fidelity continuous characterization
- Use external knowledge and adaptive sampling to solve:
 - Which destinations to probe
 - How/where to perform the probe

This Talk:

- Characterize production topology mapping systems
- Develop/analyze new primitives for active topology discovery

Archipelago/Skitter/iPlane

Production Topology Measurement

- Ark/Skitter (CAIDA), iPlane (UW)
- Multiple days and significant resources for complete cycle

Ark probing strategy:

- ullet IPv4 space divided into /24's; partitioned across \sim 41 monitors
- From each /24, select a single address at random to probe
- Probe == Scamper [L10]; record router interfaces on forward path
- A "cycle" == probes to all routed /24's

Investigate one vantage point (Jan, 2010):

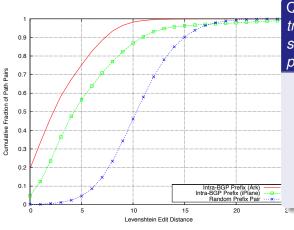
		Ark	iPlane
	Traces	263K	150K
	Probes	4.4M	2.5M
	Prefixes	55K	30K

Q1: How similar are traceroutes to the <u>same</u> destination BGP prefix?

- Use Levenshtein "edit" distance DP algorithm
- Determine the minimum number of edits (insert, delete, substitute) to transform one string into another
- e.g. "robert" \rightarrow "robber" = 2
- We use: $\Sigma = \{0, 1, \dots, 2^{32} 1\}$
- \bullet Each unsigned 32-bit IP address along traceroute paths $\in \Sigma$

ED=2

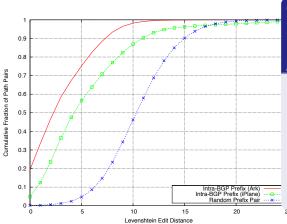
129.186.6.251 129.186.254.131 192.245.179.52 4.53.34.13 129.186.6.251 192.245.179.52 4.69.145.12


Q1: How similar are traceroutes to the <u>same</u> destination BGP prefix?

- Use Levenshtein "edit" distance DP algorithm
- Determine the minimum number of edits (insert, delete, substitute) to transform one string into another
- e.g. "robert" \rightarrow "robber" = 2
- We use: $\Sigma = \{0, 1, \dots, 2^{32} 1\}$
- \bullet Each unsigned 32-bit IP address along traceroute paths $\in \Sigma$

ED=2

129.186.6.251 129.186.254.131 192.245.179.52 4.53.34.13 129.186.6.251 192.245.179.52 4.69.145.12

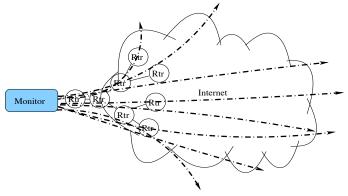


Q1: How similar are traceroutes to the same destination BGP prefix?

- ~60% of traces to destinations in same BGP prefix have ED < 3
- Fewer than 50% of random traces have ED < 10

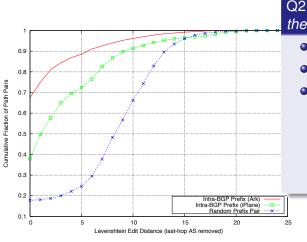
Q1: How similar are traceroutes to the same destination BGP prefix?

- ~60% of traces to destinations in same BGP prefix have ED < 3
- Fewer than 50% of random traces have ED < 10

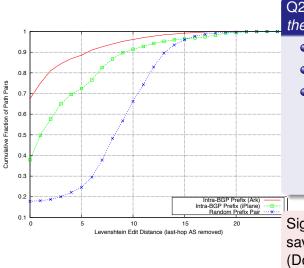

Confirms our intuition

Edit Distance

Q2: How much path variance is due to the last-hop AS?


- Intuitively, number of potential paths exponential in the depth
- More information gain at the end of the traceroute?

Edit Distance


Q2: Variance due to the last-hop AS?

- Lob off last AS
- Answer: lots!
- For ~ 70% of probes to <u>same</u> prefix, we get <u>no</u> additional information beyond leaf AS

Edit Distance

Q2: Variance due to the last-hop AS?

- Lob off last AS
- Answer: lots!
- For ~ 70% of probes to <u>same</u> prefix, we get <u>no</u> additional information beyond leaf AS

Significant packet savings possible (DoubleTree)

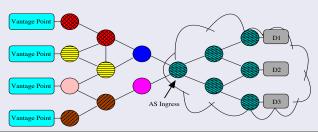
Adaptive Probing Methodology

Meta-Conclusion: adaptive probing a useful strategy

We develop three primitives:

- Subnet Centric Probing
- Vantage Point Spreading
- Interface Set Cover

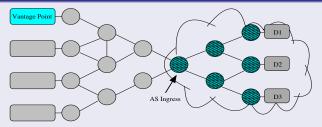
These primitives leverage <u>adaptive sampling</u>, <u>external knowledge</u> (e.g., common subnetting structure, BGP, etc), and data from prior cycles to <u>maximize efficiency and information gain of each probe</u>.

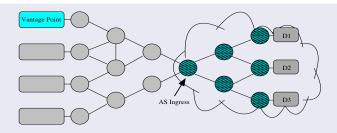


Adaptive Probing Methodology

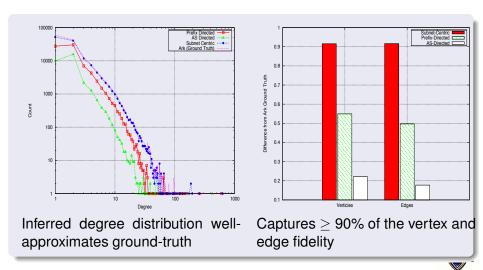
We develop three primitives:

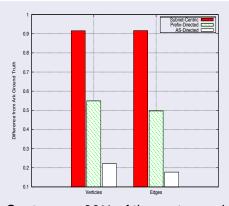
- Subnet Centric Probing
- Vantage Point Spreading
- Interface Set Cover


Best explained by understanding sources of path diversity:


Granularity vs. Scaling

- ho $\sim 2^{32-1}$ possible destinations (2.9B from Jan 2010 routeviews)
- What granularity? /24's? Prefixes? AS's?

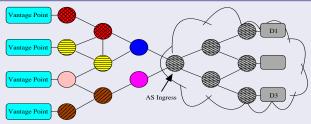

Subnet Centric Probing



- From a single vantage point, no path diversity into the AS
- Path diversity due to AS-internal structure

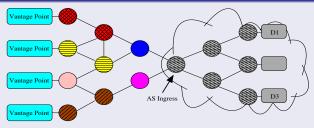
- Goal: adapt granularity, discover internal structure
- Leverage BGP as coarse structure
- Follow least common prefix: iteratively pick destinations within prefix that are maximally distant (in subnetting sense)
- Address "distance" is misleading: e.g. 18.255.255.100 vs. 19.0.0.4 vs. 18.0.0.5
- Stopping criterion: $ED(t_i, t_{i+1}) \le \tau$; $\tau = 3$

Using \sim 60% of ground-truth load


Captures \geq 90% of the vertex and edge fidelity

0.6

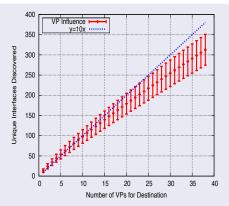
Vantage Point Spreading


Vantage Point Spreading

- Discover AS ingress points and paths to the AS via multiple vantage points
- Random assignment of destinations to vantage points is wasteful
- E.g. empirically, the 16 /24's in a /20 prefix are hit on average by 12 unique VPs

Vantage Point Spreading

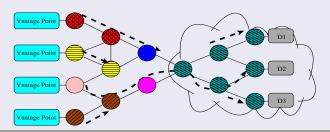
Vantage Point Spreading



- Using BGP knowledge, maximize the number of distinct VPs per-prefix
- Note, this is complimentary to SCP

Vantage Point Spreading

Diminishing return of vantage point influence

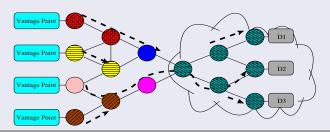


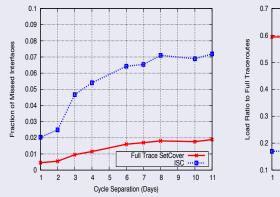
Vertices in resulting graph as compared to random: \sim 6% increase "for free."

Interface Set Cover

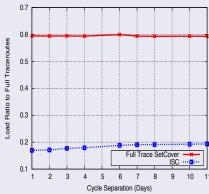
Interface Set Cover

- As shown in preceding analysis, full traces very inefficient
- Perform greedy minimum set cover approximation (NP-complete)
- Select subset of prior round probe packets for current round




Interface Set Cover

Interface Set Cover


- Generalizes DoubleTree [DRFC05] without parametrization
- Efficient
- Inherently multi-round
- Additional probing for validation mis-matches (e.g. load balancing, new paths)

Interface Set Cover

20K random IP destinations each day over a two-week period, fraction of missing interface using ISC

Uses \leq 20% of the full probing load (\sim 30% of full trace set cover)

Summary

Take-Aways:

- Deconstructed Ark/iPlane topology tracing as case study
- Developed primitives for faster, more efficient probing:
 - Subnet Centric Probing, Interface Set Cover, Vantage Point Spreading
 - Significant load savings without sacrificing fidelity

Future

- Combining our primitives on production system
- Refine ISC "change-driven" logic
- Build a better Internet scope to detect small-scale dynamics

Thanks!

Questions?