

# Decomposition of MAC Address Structure for Granular Device Inference

Jeremy Martin\*, Erik C. Rye\*, Robert Beverly<sup>+</sup>

\*US Naval Academy Annapolis, MD +US Naval Postgraduate School Monterey, CA

December 9, 2016





Introduction

- 2 Methodology
- 3 Results
- 4 Conclusions



- Ubiquitous (Ethernet, WiFi, Bluetooth, etc)
- Uniqueness ensured via IEEE allocations
- Readily available, regardless of encryption, associated state, or user interaction

## What's in a MAC?

- First 3 bytes (OUI): device manufacturer
  FuriousMAC: can we trust the first 3 bytes alone?
  FuriousMAC: what can we infer from 3 *least* signific:
  - Contiguous?
  - Sequential?
  - Predictable? e.g., fine-grained make and model?



- Ubiquitous (Ethernet, WiFi, Bluetooth, etc)
- Uniqueness ensured via IEEE allocations
- Readily available, regardless of encryption, associated state, or user interaction

## What's in a MAC?

- First 3 bytes (OUI): device manufacturer
  - FuriousMAC: can we trust the first 3 bytes alone?
- FuriousMAC: what can we infer from 3 *least* significant bytes? Contiguous?
  - Sequential?
  - Predictable? e.g., fine-grained make and model?



- Ubiquitous (Ethernet, WiFi, Bluetooth, etc)
- Uniqueness ensured via IEEE allocations
- Readily available, regardless of encryption, associated state, or user interaction

## What's in a MAC?

- First 3 bytes (OUI): device manufacturer
  - FuriousMAC: can we trust the first 3 bytes alone?
- FuriousMAC: what can we infer from 3 least significant bytes?
  - Contiguous?
  - Sequential?
  - Predictable? e.g., fine-grained make and model?



- Ubiquitous (Ethernet, WiFi, Bluetooth, etc)
- Uniqueness ensured via IEEE allocations
- Readily available, regardless of encryption, associated state, or user interaction

## What's in a MAC?

- First 3 bytes (OUI): device manufacturer
  - FuriousMAC: can we trust the first 3 bytes alone?
- FuriousMAC: what can we infer from 3 least significant bytes?
  - Contiguous?
  - Sequential?
  - Predictable? e.g., fine-grained make and model?



#### Fine-Grained Wireless Device Fingerprinting. Why:

- Support policy-based security
- Crowd density and population diversity studies
- User profiling, tracking, and security threats
- Targeted device attacks
- Reconnaissance (e.g., IoT devices such as security cameras, thermostats, and automobiles)





## Introduction

- 2 Methodology
  - 3 Results
- 4 Conclusions

# **Furious MAC**

# Enabling device manufacturer and model **predictions** for previously unknown MACs:

- FuriousMAC is first *trained* on MACs with known manufacturer and model
- Derive mapping of MAC address to device manufacturer model
  - Management frames containing WPS-enriched data fields
  - Discovery protocols, primarily mDNS
  - Easily extensible







#### Derive mapping of MAC address to device manufacturer model

#### • Management frames with WPS-enriched data fields

- Access Points (Beacons and Probe Responses), client devices (Probe Requests) manufacturer, model\_name, model\_number, device\_name, primary\_device\_type.category, .subcategory and uuid\_e
- Advantages: Unencrypted, non-associated state, low data-rates, wide range of device types
- Disadvantage: Not used by all devices (iOS, Ubiquiti, etc.)

#### • Discovery protocols, primarily mDNS

- mDNS data field, dns.txt: reveals a model identification key-value pair, correlates to a manufacturer and model
- Advantages: Fills in some high profile gaps  $\rightarrow$  iOS!!
- Disadvantages: Layer-2 encryption, associated state, often higher data-rate, not used by all devices



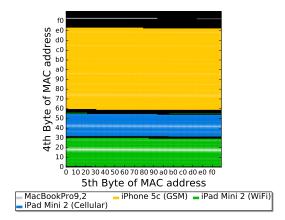
#### Training

• Using 802.11 management frames and unencrypted mDNS packets, we build a model of  $MAC \rightarrow (manufacturer, model)$ 



- Trained on 600GB of passively-collected 802.11 traffic:
  - Two billion frames
  - 2.8 million unique devices across a spectrum of IoT devices
  - January 2015 May 2016
  - IRB exemption: Only examine MACs, management frames, and discovery protocols. No attempt to decrypt traffic or inspect user's communication.




#### Locally assigned MAC address

- Privacy: randomized MAC addresses while in a non-associated state (Probe Requests)
- P2P: peer-to-peer connections utilize a locally assigned MAC address derived from the global MAC address
- APs and hotspots often advertise service using locally assigned MAC
- Ignored to preserve accuracy of mappings



# Methodology - Prediction

We perform a lexicographical comparison to find the manufacturer and model (Constrained such that the OUI must match)



Observed Models in 24:A2:E1 (Apple)

- Plot observed MAC addr-models by 4th and 5th bytes for all OUI
- Color between same models; color intensity relative to largest "gap"





## Introduction









#### Results

- 802.11 Corpus Statistics
- Vendor MAC Address Allocation Strategies
- Prediction Validation



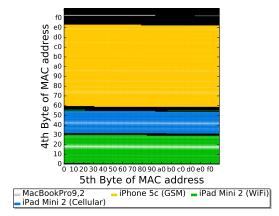
# 802.11 Corpus Statistics

| Top 10 | Manufacturers - | Clients |
|--------|-----------------|---------|
|--------|-----------------|---------|

| WPS      | Count  | %     | non-WPS   | Count   | %     |
|----------|--------|-------|-----------|---------|-------|
| LGE      | 11,184 | 22.60 | Apple     | 231,214 | 44.36 |
| Ralink   | 4,279  | 8.64  | Samsung   | 48,617  | 9.33  |
| Motorola | 3,260  | 6.58  | Murata    | 48,246  | 9.26  |
| HTC      | 3,256  | 6.57  | Intel     | 25,734  | 4.95  |
| Prosoft  | 2,234  | 4.50  | HP        | 15,287  | 2.94  |
| Amazon   | 2,222  | 4.49  | Microsoft | 13,949  | 2.68  |
| Huawei   | 1,905  | 3.83  | Ezurio    | 12,385  | 2.38  |
| Asus     | 1,659  | 3.34  | Epson     | 6,839   | 1.32  |
| ZTE      | 1,619  | 3.25  | Lexmark   | 5,289   | 1.01  |
| Alco     | 1,036  | 2.10  | Sonos     | 4,542   | .09   |
| Other    | 16,859 | 34.10 | Other     | 109,271 | 20.96 |

# Apple makes up ${\sim}45\%$ of the non-WPS devices, emphasizing how mDNS and WPS are complementary

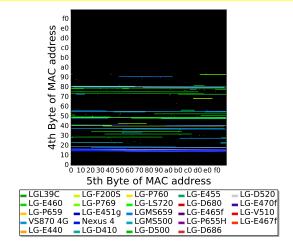



## **OUI** Complexity

- There is no general pattern between manufacturers; some assign the entire OUI to only one model while others assign smaller ranges to dozens of distinct models
- The size and number of distinct ranges assigned to a model also follows no general rule
- 2,956 OUIs observed (WPS):  ${\sim}5,000$  OUI to manufacturer pairings and 10,000 OUI to model pairings
- 352 OUIs observed (Apple mDNS): 1,028 OUI to model pairings

#### Visualization of Allocation Space

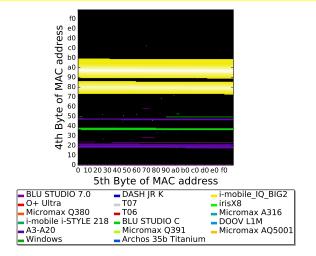
Next, we highlight several exemplar allocation schemes






Observed Models in 24:A2:E1 (Apple)

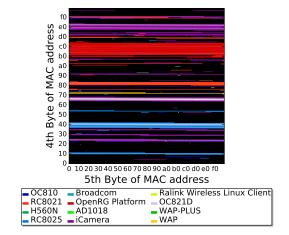
- Different generations w/in same OUI
- Different device types (phone, tablet, laptop)
- Different allocation sizes, large contiguous blocks
- Fine-grained, e.g., iPad Mini 2 WiFi vs. Cellular






Observed Models in 8C:3A:E3 (LGE)

- Micro-allocation of LGE smartphones
- Large blocks of unallocated or unobserved address space
- Fingerprinting is difficult compared to Apple






Observed Models in 90:21:81 (Shanghai Huaqin)

- Diversity of Phone Manufacturers for a Single OUI
- Improves granularity of fingerprinting over OUI-based methods





Observed Models in 00:0E:8F (Sercomm Corp.)

• Fine-grained model inference  $\rightarrow$  802.11-enabled cameras

## CRAWDAD Sapienza Dataset

- $\bullet~11 M$  probe requests from  $\sim~160{,}000$  unique devices
  - Captured from Italy in 2013; do not appear in our corpus
  - Anonymized data, to include MAC addresses

#### Validate Against Our Corpus

- Identify CRAWDAD probe requests with distinguishing WPS-manufacturer/model fields and UUID-E
- Obtain global MAC from precomputed UUID-E lookup tables<sup>1</sup>
  - 1,746 global addresses recovered (test data), find closest MAC address "match" in our WPS corpus (training set)
  - If CRAWDAD manufacturer/model matches corpus closest-match manufacturer/model, inference is correct
  - Validation achieves 81.3% accuracy

<sup>&</sup>lt;sup>1</sup>M. Vanhoef, C. Matte, M. Cunche, L. Cardoso, and F. Piessens. Why MAC Address Randomization is not Enough: An Analysis of Wi-Fi Network Discovery Mechanisms. In ACM AsiaCCS, 2016.



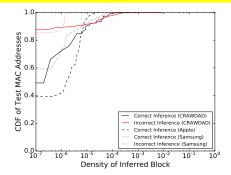
# Validation - Ground Truth

#### **Device Overview**

- Procured 140 Apple and 139 Samsung devices
- Gamut of device types, life-cycles, and operating system versions
- Specifically evaluate the power Apple mDNS derived allocations

| Device                 | Precision | Recall | F-score |
|------------------------|-----------|--------|---------|
| Apple                  |           |        |         |
| - iPhone (iOS 7.0-)    | .000      | .000   | 0       |
| - iPhone (iOS 8.0+)    | .909      | .909   | .909    |
| - iPad/iPod (iOS 8.0+) | .857      | .900   | .877    |
| - All iOS 8.0+ Devices | .892      | .906   | .898    |
| - OS X                 | .771      | 1.00   | .870    |
| - Apple TV             | .750      | 1.00   | .857    |
| - iOS 8.0+ and OS X    | .850      | .934   | .890    |
| - All                  | .715      | .838   | .772    |
| Samsung                |           |        |         |
| - Galaxy S4 and prior  | .684      | .892   | .774    |
| - Galaxy S5 to current | .475      | .863   | .613    |
| - Galaxy Tablets       | .250      | .071   | .110    |
| - All                  | .598      | .761   | .670    |

# Furious MAC Validation - Cross Validation Test


## 5-Fold Cross Validation

- $\bullet\,$  Partition corpus' WPS and mDNS datasets into five random sets
- For MAC addresses in each set (test data), find the closest-matching MAC address in remaining sets (training data)
  - Compare using simple distance (48-bit integer representation) versus lexicographical distance
  - Manufacturer/model in test set compared to manufacturer/model in training set
  - Each set is used once as test data against the remaining four sets

#### Validation

- Achieve average accuracy:
  - $\sim$ 90.95% (lexicographical distance) vs  $\sim$ 91.16% (simple distance)
  - $\sim \sim 10\%$  improvement over the accuracy we obtain when testing against CRAWDAD dataset
    - $\sim$   $\sim$  3% improvement over our validation using ground truth devices

# **Furious MAC** Validation - Density vs Inference



- Block density  $\frac{\# \text{ of device observations}}{\text{size of inferred model range}}$
- CRAWDAD density analysis

((1••

- 55% of correct inferences within non-trivial block density
- 85% of incorrect inferences fall outside of any block (density of 0)
- Only 1 incorrect Apple inference falls inside a block





## Introduction

- 2 Methodology
- 3 Results





#### $\mathsf{MAC}$ address allocation is complex but generally non-random

• Vendors allocate contiguous blocks from their OUIs to individual device models.

#### This determinism illustrates two concerns:

- management and discovery protocols allow significant privacy leaks
- the allocation of MAC addresses lends itself to device fingerprinting

#### Fingerprinting

- $\bullet$  Our corpus of over two billion 802.11 frames and  ${\sim}3{,}000$  OUIs allows us to make accurate device model predictions
  - Improved granularity of MAC-based fingerprinting
  - Complexity and variety of allocation policies causes simpler fingerprinting techniques to fail
  - Resilient, other methods rely on user-configurable data