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Abstract—The hardware identifiers of common wireless pro-
tocols can be exploited by adversaries for both tracking and
physical device association. Rather than examining hardware
identifiers in isolation, we observe that many modern devices are
equipped with multiple wireless interfaces of different physical
types, e.g. GSM and 802.11, suggesting that there exists utility in
cross-protocol hardware identifier correlation. This research empir-
ically examines the feasibility of such cross-protocol association,
concentrating on correlating a GSM hardware identifier to that
of the 802.11 hardware identifier on the same device. Our dataset
includes 18 distinct mobile devices, with identifiers collected over
time at disparate locations. We develop correlation techniques
from the perspective of two adversaries: i) limited, able to observe
identifiers only in time and space; and ii) a more advanced
adversary with visibility into the data stream of each protocol.
We first test correlation via temporal and spatial analysis using
only basic signal collection, mimicking an RF collection with no
decryption or data processing capability. Using a constrained
optimization algorithm over temporal and spatial data to perform
matching, we demonstrate increasing association accuracy over
time, up to ≈80% in our experiments. Our second approach
simulates the added capability to collect, decrypt, and reconstruct
specific application protocol data, and parses the data of one
protocol using search terms derived from the other. With the
combined techniques, we achieve 100% accuracy and precision.

I. INTRODUCTION

The hardware identifiers of common wireless protocols,
e.g. an 802.11 MAC or GSM IMEI, are globally unique and
do not change over the lifetime of a device, thereby permitting
both tracking and physical device association1. As such, these
identifiers can be exploited by adversaries for a range of attacks
ranging from mobile privacy to targeted denial-of-service. For
example, analytic engines frequently use available hardware
identifiers [1] for targeted advertising and statistics gathering.
More onerously, hardware addresses reveal crucial details
about the device that malicious adversaries can leverage. [2]
illustrates a GSM air interface attack where the attacker must
first know the IMEI of the intended victim, while [3] and
[4] demonstrate per-device remote SMS denial-of-service and
remote SIM card rooting, respectively. An attacker correlating
hardware identifiers, can use details gleaned from protocol A to
identify and exploit security vulnerabilities inherent to protocol
B, increasing the available attack vectors.

Rather than examining hardware identifiers in isolation, we
observe that many commodity mobile devices, e.g. phones and
tablets, are equipped with multiple physically distinct wireless
interfaces. This work focuses on an adversary’s ability to
correlate GSM and 802.11 hardware identifiers.

The format and structure of GSM and 802.11 ad-
dresses are different and do not facilitate trivial association
(e.g. GSM IMEI 490154203237518 and 802.11 MAC

1We leave the analysis of identifier ‘spoofing’ or obfuscation to future work.

04:0C:CE:C1:AB:4F). Furthermore, there is no relation
between governing identifier allocation authorities. 802.11’s
unique hardware identifier is an EUI-48 media access control
(MAC) address of six bytes [5], as shown in Figure 1, where
the most significant three bytes correspond to an Organization-
ally Unique Identifier (OUI) of the 802.11 chip manufacturer.
The remaining three bytes are assigned to be globally unique.

Fig. 1: IEEE 802.11 MAC Address Structure from [5]

GSM utilizes a 15 digit unique identifier known as the
International Mobile Equipment Identity (IMEI). As shown
in Figure 2, the first six to eight digits represent the Type
Allocation Code (TAC), delineating the type and model of
the device, while the remaining digits are assigned by the
manufacturer to be unique and include a final check digit [6].

Fig. 2: GSM IMEI Address Structure from [6]

To the best of our knowledge, our work is the first to
examine GSM and 802.11 hardware identifier correlation.
While Garfinkel et al. identified the ‘constellation threat’ of
tracking an individual’s RF device emissions [7], our temporal
analysis demonstrates the feasibility of using constellations
for cross-correlation. Related work in security and privacy
issues surrounding leaked hardware identifiers, location data,
and other personal information, e.g. [1], [3], [8], [9], [10],
[11], further motivates our work. We build on prior research by
demonstrating the power of an adversary to accurately correlate
otherwise unrelated hardware identifiers.

We empirically demonstrate GSM and 802.11 hardware
identifier correlation using a real-world dataset that includes
data captured from 18 distinct mobile devices with identifiers
collected over time at disparate locations. We develop corre-
lation techniques from the perspective of two adversaries: i)
limited, able to observe identifiers only in time and space;
and ii) a more advanced adversary with visibility into the
data stream of each protocol. We first test correlation via
temporal and spatial analysis using only basic signal col-
lection, mimicking an RF collection with no decryption or
data processing capability. Using a constrained optimization
algorithm over temporal and spatial data to perform matching,
we demonstrate increasing association accuracy over time, up
to ≈80% in our experiments. Our second approach simulates
the added capability to collect, decrypt, and reconstruct specific
application protocol data, and parses the data of one protocol
using search terms derived from the other. With the combined
techniques, we achieve 100% accuracy and precision.



While we focus on GSM and 802.11, our framework
may be applied to other protocols (e.g. Bluetooth, CDMA,
WiMax), and easily integrates additional data sources and
analytic techniques. In this paper, we discuss the IMEI in
relation to the original 2G GSM standard. However, the IMEI
is used in 3G and 4G GSM-based devices [12], [13], [14].
Thus, the use, allocation, and relevance of the IMEI, and our
technique, applies to all of these systems. We hope this work
serves as a step forward in identifying a previously under-
appreciated privacy and security threat.

II. DATA COLLECTION

To evaluate the cross-protocol association techniques we
develop, we generate two datasets that reflect data available to
the limited adversary (hardware identifiers), and then a richer
dataset to model the identifying information available to an
advanced adversary (capable of viewing protocol payloads).

A. Limited Adversary Data
We created our dataset using 18 different mobile devices

with GSM and 802.11 capability; the devices are shown in
Table I, along with a unique identifier which we use to refer to
individual devices in this paper (e.g. iPh5 is our 5th iPhone). To
model temporal movement, the dataset includes six different
snapshots in time, while three different simulated locations
model spatial movement (classroom1, classroom2, library). A
randomly selected subset of our devices was used for each of
the six iterations. We simulate location by randomly assigning
each collection test to one of the three locations.

TABLE I: Physical devices used to generate dataset.
Count Make Model ID
2 Acer Iconia A501 aIa
7 Apple iPhone 3GS iPh
1 Apple iPad iPa
1 HTC Hero hH
1 HTC Nexus One hNo
1 HTC Surround T8788 hSt
2 HTC Eng Handset hEh
1 Samsung I7500 sGa
2 Samsung 19250 Galaxy sGn

Simulating GSM and 802.11 hardware identifier collection
avoids pragmatic issues involved in operating rogue GSM base
stations. However, we note that collecting 802.11 identifiers
(MAC addresses) is trivial, while obtaining GSM IMEIs is
feasible in practice; §IV discusses one possible approach.

The limited adversary has access to the time and location
that each IMEI and MAC address is observed for each device.
In contrast, the advanced adversary dataset, discussed next,
utilizes captured features of real traffic from the 18 devices.

Several public databases contain mappings of various iden-
tifiers to device hardware. For example, the first three bytes of
an 802.11 MAC address can be queried to determine the device
manufacturer. We derived a mapping of OUI to manufacturer
from the IEEE database [15].

Similarly, the IMEI can be used to infer the manufacturer
and model of the device. We create a mapping of TAC to
manufacturer and model correlations derived from various
Internet listings and verified via the online TAC lookup service,
http://www.nobbi.com/tacquery.php. From the manufacturer
and model, we query http://www.gsmarena.com/quicksearch to
obtain a list of device capabilities, e.g. 802.11 capability and
operating system.

802.11 MACsGSM IMEIs

Fig. 3: The correlation problem: associate observed GSM
IMEIs with observed 802.11 MACs

B. Advanced Adversary Data
In addition to hardware identifiers observed in space and

time, the data available to an advanced adversary includes the
full payload of the communication packet stream. Thus, the
advanced adversary must address issues of RF propagation and
wireless collection considerations, and be able to circumvent
any encryption. These concerns are outside the scope of the
present research and instead are the focus of other work in
high gain antennas, specialized amplifiers, and decryption.

Our advanced adversary dataset therefore effectively elimi-
nates all of these concerns by creating a collection environment
where we obtain 100% packet capture. Each device associates
with an 802.11 wireless access point under our control where
we perform full packet capture.

Within the data payloads of 802.11 frames is a wealth of
data. We identify the following widely deployed and readily
available protocols and data fields that contain information
relevant to the mobile device hardware, including manufacturer
and/or device model information:
• User-Agent string in HTTP traffic, which can be used

to derive the manufacturer, model, and specific device capa-
bilities and properties.
• User Agent Profiles (UAProf) in the HTTP traffic of

some devices, which can reveal the manufacturer, model, and
device capabilities.
• Multicast DNS (mDNS) for device discovery, used in

Apple’s Bonjour, reveals the device-specific hostname.
• Bootstrap Protocol (BOOTP) and Dynamic Host Con-

figuration Protocol (DHCP), which broadcast hostname infor-
mation indicative of the physical device.

We query a local instantiation of the WURFL database [16]
for each collected User-Agent. WURFL maps User-Agents
to a profile including the device manufacturer, model, and
capabilities. Table II provides example data available to the
advanced adversary from four of our devices.

III. CORRELATION

Abstractly, the correlation problem is bipartite matching
whereby we wish to associate observed 802.11 MACs with
observed GSM IMEIs based on available evidence (Figure 3).
We generalize this correlation as an Integer Linear Program
(ILP) that accommodates the different evidence in our datasets
as constraints on the solution. For example, if TAC i and MAC
j were never observed together in the same location, we may
reasonably infer that they are an unlikely pair. Conversely, if i
and j are observed to be active within the same time window
repeatedly, that is an indication that they correspond to the
same device.

Let Tt be the m-by-n matrix representing the t’th snapshot
of our temporal data where |m| is the number of distinct
GSM TACs and |n| is the number of distinct 802.11 MACs.
Thus, T t

i,j is the number of times TAC i and MAC j were



TABLE II: Example data – identifiers collected from 4 of 18 devices in our experiment.
Device TAC-Derived Info OUI-Derived Info BOOTP Bonjour UAProf
Acer Iconia A501 Ericsson F5521gw PCIE Azurewave Tech n/a n/a http://support.acer.com/UAprofile/Acer A501 Profile.xml
Apple iPhone 3GS Apple iPhone 3GS 16GB Apple, Inc iPhone3GS-1 iPhone3GS-1.local n/a
HTC Hero HTC Hero HTC Corporation n/a n/a http://www.htcmms.com.tw/Android/Common/Hero/ua-profile.xml
Samsung Galaxy Nexus Samsung I9250 Galaxy Nexus Samsung Electro android-cd5db081844aeb9c n/a n/a

both active in the previous t time windows. Similarly, let St

represent spatial snapshots such that St
i,j is the number of

distinct locations TAC i and MAC j were observed together
within the previous t time windows.

Let A be the sparse association matrix such that Ai,j = 1
indicates that TAC i is associated with MAC j. We wish to
maximize the sum of the “strong” correlations, subject to the
feasibility constraints that only one TAC may be associated
with at most one MAC and vice-versa. The A that maximizes
the sum of the evidence provides the inferred hardware correla-
tions. As an ILP, which we express in the MathProg modeling
language and solve using GLPK [17]:

Maximize
m∑
i=1

n∑
j=1

TijAij + SijAij

Subject to
m∑
i=1

Aij ≤ 1,

n∑
j=1

Aij ≤ 1

|m| may not equal |n| if there is more of one identifier
than the other. Therefore, we constrain the sum of each row
vector to be less than or equal to one, i.e. a MAC may or may
not be associated with a TAC. Likewise, we constrain the sum
of each column vector to be less than or equal to one.

A. Limited Adversary Scenario
We first consider the limited adversary able to detect RF

broadcast GSM and 802.11 identifiers.
1) Temporal: Temporal analysis is performed by assigning

a value to the number of times an IMEI and a MAC address
were seen in collection within the same time window. The
hypothesis is that temporal pairings will give significant insight
into identifier association without regard to protocol analysis.
Possible detractors to this method are limited collection sam-
ples, co-located devices, and poor timestamp synchronization
between collection platforms. An additional consideration for
temporal analysis is the precision of the time window for
collection. For our analysis, the time window was known
a priori. Future analysis should be conducted to ensure the
optimal time window, given the collection capabilities.

2) Spatial: Spatial analysis, although similar to temporal, is
different in that we measure the number of disparate locations
that the IMEI and MAC address pair were seen together. The
hypothesis is that a pair that appears together in different
locations has a much higher probability of corresponding to
the same device. However, of concern are co-located devices
that change locations in similar patterns: for example, three
students who move between classrooms in unison throughout
the day will have devices with high spatial relationships. We
leverage the partial insight from spatial and temporal analysis.

3) TAC – OUI: OUI-based correlation permits only coarse
inference as just the device manufacturer is returned from an
OUI lookup. In the absence of other protocols for a given
pairing, the comparison of the TAC manufacturer and OUI
manufacturer should eliminate pairings that cannot be possible.
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Fig. 4: Devices correctly correlated as a function of time

TABLE III: Results of Temporal, Spatial, Temporal-Spatial
(T/S), and Weighted Temporal-Spatial (T*5/S)

Temporal Spatial T / S T * 5 / S
iPh1 = iPh1 iPh1 = iPh1 iPh1 = iPh1 iPh1 = iPh1
iPh2 = iPh2 iPh2 = hEh1 iPh2 = iPh2 iPh2 = iPh2
iPh3 = iPh3 iPh3 = iPh3 iPh3 = iPh3 iPh3 = iPh3
iPh4 = iPh5 iPh4 = hEh2 iPh4 = iPh4 iPh4 = iPh5
iPh5 = iPh4 iPh5 = iPh5 iPh5 = iPh5 iPh5 = iPh4
iPh6 = iPh6 iPh6 = iPh6 iPh6 = iPh6 iPh6 = iPh6
iPh7 = iPh7 iPh7 = hNo1 iPh7 = iPh7 iPh7 = iPh7
iPa1 = iPa1 iPa1 = iPh2 iPa1 = iPa1 iPa1 = iPa1

sGn1 = sGn1 sGn1 = iPa1 sGn1 = sGn1 sGn1 = sGn1
sGn2 = sGn2 sGn2 = hH1 sGn2 = hNo1 sGn2 = sGn2
hSt1 = hSt1 hSt1 = hSt1 hSt1 = hSt1 hSt1 = hSt1

hNo1 = hNo1 hNo1 = iPh7 hNo1 = sGn2 hNo1 = hNo1
sGa1 = hH1 sGa1 = aIa2 sGa1 = aIa2 sGa1 = aIa2
aIa1 = aIa1 aIa1 = aIa1 aIa1 = aIa1 aIa1 = aIa1
aIa2 = aIa2 aIa2 = sGn2 aIa2 = hEh2 aIa2 = hEh2
hH1 = sGa1 hH1 = sGa1 hH1 = sGa1 hH1 = hH1
hEh1 = hEh1 hEh1 = sGn1 hEh1 = hEh1 hEh1 = hEh1
hEh2 = aN7s1 hEh2 = iPh4 hEh2 = aN7s1 hEh2 = sGa1

13/18 6/18 12/18 13/18

We first evaluate temporal correlations by showing the
increased precision achieved through successive collection
iterations. As depicted in Figure 4, we correctly correlate 13 of
the 18 hardware identifiers after six collection iterations using
only the temporal data.

Next, we evaluate the results of temporal (T), spatial (S),
temporal and spatial (T/S), and finally a weighted temporal and
spatial analysis (T*5/S), using a temporal weight coefficient of
five, in Table III. Grey cells indicate correct inferences.

While we expected better results with spatial analysis, the
performance is limited by our data that contains many co-
located devices that move together. With more locations and
longer collections, we expect the ambiguity to resolve.

We now add the TAC-OUI correlation technique to our
bipartite matching algorithm, with the results in Table IV.
There was a slight improvement with the addition of the OUI
analysis and no conclusive change when using a weighted
temporal value. Although it appears that we lost granularity
on devices iPh4 and iPh5, it is important to note that these
devices have the exact same characteristic vectors across all
correlation maps — they are the same model using the default
configuration, and will therefore have the same results for
our OUI, User Agent, and Bonjour analysis. As a result, the
algorithm correctly groups all of the identifiers of iPh4 and



TABLE IV: Normal vs. Weighted TAC-OUI Correlation
T/S/O T*5/S/O

iPh1 = iPh1 iPh1 = iPh1
iPh2 = iPh2 iPh2 = iPh2
iPh3 = iPh3 iPh3 = iPh3
iPh4 = iPh4 iPh4 = iPh5
iPh5 = iPh5 iPh5 = iPh4
iPh6 = iPh6 iPh6 = iPh6
iPh7 = iPh7 iPh7 = iPh7
iPa1 = iPa1 iPa1 = iPa1

sGn1 = sGn1 sGn1 = sGn1
sGn2 = sGn2 sGn2 = sGn2
hSt1 = hSt1 hSt1 = hSt1

hNo1 = hNo1 hNo1 = hNo1
sGa1 = aIa2 sGa1 = aIa2
aIa1 = aIa1 aIa1 = aIa1
aIa2 = sGa1 aIa2 = sGa1
hH1 = hH1 hH1 = hH1

hEh1 = hEh1 hEh1 = hEh1
hEh2 = hEh2 hEh2 = hEh2

16/18 14/18

iPh5, but only finds the correct two pairs within that group with
chance – the best that the algorithm could possibly do, given
the evidence. In real-life scenarios, continued data collection
can resolve instances of equivalent evidence.

B. Advanced Adversary Scenario
The second scenario represents an advanced adversary with

the capability to process the data-stream of each protocol.
Correlations between devices are made using protocol data
analysis techniques as well as the aforementioned temporal,
spatial, and TAC-OUI methods. We use the same general ILP,
but include k = 7 different association matrices, given as
Ck where: C1 is temporal, C2 is spatial, C3 is OUI, C4 is
UAProf, C5 is User-Agent, C6 is DHCP, and C7 is Bonjour. To
balance the relative influence of each, we introduce a weighting
coefficient vector WT = (5, 1, 1, 1, 1, 0.75, 0.75). Formally:

Maximize
c∑

k=1

m∑
i=1

n∑
j=1

Ck
ijW

kAi,j

Subject to
m∑
i=1

Aij ≤ 1,

n∑
j=1

Aij ≤ 1

1) TAC – User-Agent: We compare TAC data to the derived
User-Agent. The TAC lookup provides us with the manufac-
turer and a model of a device, as does the User-Agent. Of
note, User-Agents do not appear to delineate between specific
iPhone models and thereby reduce the granularity of the cor-
relation in those instances. We do a simple substring matching
of the TAC manufacturer to the User-Agent manufacturer.
Likewise, we match between derived models. Exact matches
receive a score of 10, no match or no data receive a score of
0, and partial matches receive a score between 0 and 10.

2) TAC – UAProf: Similarly, we compare manufacturer
and model derived from the TAC and the UAProf profile by
performing a substring matching of the UAProf URL and using
the same scoring from User-Agent analysis. We hypothesize
that the User-Agent and UAProf analysis will be the strongest
correlation indicators of the protocol-based analysis techniques
due to the granularity inherent in the dataset.

3) DHCP: Both DHCP and Bonjour offer a unique form
of granularity. Neither specifically identifies the manufacturer
of the device; however, the manufacturer can sometimes be
inferred. Additionally, both protocols pair well with the OUI

TABLE V: Protocol Analysis with TAC-OUI Correlation
UA UAProf OUI Bonjour DHCP

iPh1 = iPh5 iPh1 = iPh2 iPh1 = iPa1 iPh1 = hEh1 iPh1 = iPh5
iPh2 = iPh2 iPh2 = hEh2 iPh2 = iPh6 iPh2 = iPh7 iPh2 = hEh2
iPh3 = iPh4 iPh3 = hEh1 iPh3 = iPh4 iPh3 = hH1 iPh3 = hH1
iPh4 = iPh7 iPh4 = hNo1 iPh4 = iPh2 iPh4 = iPh2 iPh4 = iPh2
iPh5 = iPh3 iPh5 = sGa1 iPh5 = iPh3 iPh5 = iPh5 iPh5 = iPh7
iPh6 = iPh1 iPh6 = iPh1 iPh6 = iPh1 iPh6 = iPh1 iPh6 = iPh1
iPh7 = iPh6 iPh7 = iPh3 iPh7 = iPf1 iPh7 = iPh6 iPh7 = iPh6
iPa1 = iPa1 iPa1 = sGn2 iPa1 = iPh7 iPa1 = hEh2 iPa1 = iPa1

sGn1 = sGn1 sGn1 = sGn1 sGn1 = sGn1 sGn1 = sGn1 sGn1 = sGn1
sGn2 = sGn2 sGn2 = iPh7 sGn2 = sGn2 sGn2 = sGn2 sGn2 = sGa1
hSt1 = hSt1 hSt1 = aN7s1 hSt1 = hEh2 hSt1 = aN7s1 hSt1 = hEh1

hNo1 = hEh1 hNo1 = iPh5 hNo1 = hH1 hNo1 = sGa1 hNo1 = iPh4
sGa1 = sGa1 sGa1 = iPh6 sGa1 = iPh5 sGa1 = iPh3 sGa1 = iPf1
aIa1 = aN7s1 aIa1 = aIa1 aIa1 = aIa1 aIa1 = aIa1 aIa1 = aIa1
aIa2 = iPf1 aIa2 = iPf1 aIa2 = aIa2 aIa2 = iPf1 aIa2 = aIa2
hH1 = hH1 hH1 = hH1 hH1 = hEh1 hH1 = hNo1 hH1 = hNo1
hEh1 = aIa2 hEh1 = aIa2 hEh1 = hSt1 hEh1 = aIa2 hEh1 = aN7s1
hEh2 = aIa1 hEh2 = iPh4 hEh2 = hNo1 hEh2 = iPh4 hEh2 = sGn2

7/18 3/18 4/18 4/18 4/18

analysis, combining the manufacturer correlation (OUI) and
the model correlation (DHCP/Bonjour). While DHCP and
Bonjour are less granular than that of User-Agent or UAProf
analysis, they are valuable in instances where a User-Agent is
not collected or in instances where User-Agent resolution fails
to disambiguate. Apple devices typically contain the model
information in both DHCP and Bonjour protocols and can be
used to compare substring matches of the TAC-derived model.
Android devices have a hostname of the format android_X
or android-X, where X is a number assigned during operat-
ing system (OS) build time. Utilizing the previously obtained
OS information from the GSM Arena lookup, we can min-
imally correlate the IMEI and MAC address pair based on
OS compatibility. A correlation score of 10 indicates an exact
match, a score of 0 indicates no match or no data, a score
of 2 indicates an OS match. To date, we have been unable to
identify traffic from non-iOS or Android devices.

4) Bonjour: Bonjour is enabled by default on Apple de-
vices [18] and often substantiates OUI correlation. We observe
that Apple devices utilize both DHCP and Bonjour, and
provide the same hostname in each for a single device. The
value of utilizing both protocols for correlation is to provide
redundancy and improve reliability in cases when one or the
other cannot be collected. Note that the user may change
DHCP and Bonjour hostnames, thereby removing insight into
the device other than revealing its OS.

The following correlation techniques are implemented us-
ing the bipartite matching algorithm: TAC-User-Agent (U),
TAC-UAProf (X), TAC-Bonjour (M), and TAC-DHCP (B). We
first evaluate each protocol to include the previously utilized
TAC-OUI technique individually without temporal or spatial
analysis, results of which are in Table V. As expected, using
only TAC-User-Agent provides some fidelity, but must be com-
bined with other techniques to provide accurate correlations.

Next, we evaluate different combinations of the proto-
cols while adding the temporal and spatial correlation. By
adding the User-Agent data, we achieve the highest meaningful
precision this data set allows when considering the previous
explanation for devices iPh4 and iPh5 (Table VI).

Table VII demonstrates several important findings. First,
the combination of OUI with DHCP and Bonjour achieves
similar performance to that of the User-Agent. This alternate
method proves valuable in instances where we do not or
cannot collect the User-agent, or where the User-Agent is not



TABLE VI: Results Incorporating User-Agent Data
T/S/UA T*5/S/UA

iPh1 = iPh1 iPh1 = iPh1
iPh2 = iPh2 iPh2 = iPh2
iPh3 = iPh3 iPh3 = iPh3
iPh4 = iPh4 iPh4 = iPh5
iPh5 = iPh5 iPh5 = iPh4
iPh6 = iPh6 iPh6 = iPh6
iPh7 = iPh7 iPh7 = iPh7
iPa1 = iPa1 iPa1 = iPa1

sGn1 = sGn1 sGn1 = sGn1
sGn2 = sGn2 sGn2 = sGn2
hSt1 = hSt1 hSt1 = hSt1

hNo1 = hNo1 hNo1 = hNo1
sGa1 = sGa1 sGa1 = sGa1
aIa1 = aIa1 aIa1 = aIa1
aIa2 = hEh2 aIa2 = aIa2
hH1 = hH1 hH1 = hH1

hEh1 = hEh1 hEh1 = hEh1
hEh2 = aN7s1 hEh2 = hEh2

16/18 16/18

TABLE VII: Results Incorporating DHCP and Bonjour
T/S/O/B/M T*5/S/O/B/M T*5/S/O/B*.75/M*.75
iPh1 = iPh1 iPh1 = iPh1 iPh1 = iPh1
iPh2 = iPh2 iPh2 = iPh2 iPh2 = iPh2
iPh3 = iPh3 iPh3 = iPh3 iPh3 = iPh3
iPh4 = iPh5 iPh4 = iPh4 iPh4 = iPh4
iPh5 = iPh4 iPh5 = iPh5 iPh5 = iPh5
iPh6 = iPh6 iPh6 = iPh6 iPh6 = iPh6
iPh7 = iPh7 iPh7 = iPh7 iPh7 = iPh7
iPa1 = iPa1 iPa1 = iPa1 iPa1 = iPa1

sGn1 = sGn1 sGn1 = sGn1 sGn1 = sGn1
sGn2 = sGn2 sGn2 = sGn2 sGn2 = sGn2
hSt1 = hSt1 hSt1 = hSt1 hSt1 = hSt1

hNo1 = hEh2 hNo1 = hEh2 hNo1 = hNo1
sGa1 = sGa1 sGa1 = sGa1 sGa1 = sGa1
aIa1 = aIa1 aIa1 = aIa1 aIa1 = aIa1
aIa2 = aIa2 aIa2 = aIa2 aIa2 = aIa2
hH1 = hH1 hH1 = hH1 hH1 = hH1

hEh1 = hEh1 hEh1 = hEh1 hEh1 = hEh1
hEh2 = hNo1 hEh2 = hNo1 hEh2 = hEh2

14/18 16/18 18/18

discriminatory. Additionally, we found that by lowering the
relative weight of DHCP and Bonjour (to 0.75), we ensure
they do not overwhelm stronger sources of evidence.

It is difficult to interpret our UAProf results as only three
of our devices transmitted a UAProf URL. Only one device
provided data that could be correlated to the TAC (hH1 - HTC
Hero), as the manufacturer for the two aIa devices (Acer Iconia
A501) was different than the manufacturer derived from the
TAC. We can see in Table VIII that while previous temporal
and spatial analysis did not correctly correlate the identifiers
for device hH1, we were able to correctly correlate the device
using its UAProf data. Devices iPh4 and iPh5 were seen to
have changed again, due to their inherent similarity. We believe
that a larger device dataset including more devices sending
UAProf will enhance the utility of this form of correlation. We
have observed a significant number of mobile devices utilize
the UAProf x-wap-profile in our continued research — 45 out
of 134 devices in our dataset.

The test results in Table IX show the effects of using
all of our techniques combined with weighted coefficients
for the temporal, Bonjour, and DHCP datasets. Using these
coefficients, we achieve the highest accuracy possible using
the complete correlation technique.

C. Leaked IMEI
Lastly, we examine a very strong form of correlation:

IMEIs leaked in the payload of 802.11 traffic. While such

TABLE VIII: Results After Incorporating UAProf Data
T/S/UAProf T*5/S/UAProf
iPh1 = aIa1 iPh1 = aIa1
iPh2 = iPh2 iPh2 = iPh2
iPh3 = iPh3 iPh3 = iPh3
iPh4 = iPh4 iPh4 = iPh5
iPh5 = iPh5 iPh5 = iPh4
iPh6 = iPh6 iPh6 = iPh6
iPh7 = iPh7 iPh7 = iPh7
iPa1 = iPa1 iPa1 = iPa1

sGn1 = sGn1 sGn1 = sGn1
sGn2 = sGn2 sGn2 = sGn2
hSt1 = hSt1 hSt1 = hSt1

hNo1 = hNo1 hNo1 = hNo1
sGa1 = sGa1 sGa1 = aIa2
aIa1 = iPh1 aIa1 = iPh1
aIa2 = aIa2 aIa2 = sGa1
hH1 = hH1 hH1 = hH1

hEh1 = hEh1 hEh1 = hEh1
hEh2 = hEh2 hEh2 = aN7s1
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TABLE IX: Results After Incorporating All Collected Data
T/S/O/U/X/M/B T*5/S/O/U/X/M/B T*5/S/O/U/X/M/B*.75 T*5/S/O/U/X/M*.75/B*.75

iPh1 = iPh1 iPh1 = iPh1 iPh1 = iPh1 iPh1 = iPh1
iPh2 = iPh2 iPh2 = iPh2 iPh2 = iPh2 iPh2 = iPh2
iPh3 = iPh3 iPh3 = iPh3 iPh3 = iPh3 iPh3 = iPh3
iPh4 = iPh5 iPh4 = iPh5 iPh4 = iPh5 iPh4 = iPh4
iPh5 = iPh4 iPh5 = iPh4 iPh5 = iPh4 iPh5 = iPh5
iPh6 = iPh6 iPh6 = iPh6 iPh6 = iPh6 iPh6 = iPh6
iPh7 = iPh7 iPh7 = iPh7 iPh7 = iPh7 iPh7 = iPh7
iPa1 = iPa1 iPa1 = iPa1 iPa1 = iPa1 iPa1 = iPa1

sGn1 = sGn1 sGn1 = sGn1 sGn1 = sGn1 sGn1 = sGn1
sGn2 = sGn2 sGn2 = sGn2 sGn2 = sGn2 sGn2 = sGn2
hSt1 = hSt1 hSt1 = hSt1 hSt1 = hSt1 hSt1 = hSt1

hNo1 = hEh2 hNo1 = hEh2 hNo1 = hNo1 hNo1 = hNo1
sGa1 = sGa1 sGa1 = sGa1 sGa1 = sGa1 sGa1 = sGa1
aIa1 = aIa1 aIa1 = aIa1 aIa1 = aIa1 aIa1 = aIa1
aIa2 = aIa2 aIa2 = aIa2 aIa2 = aIa2 aIa2 = aIa2
hH1 = hH1 hH1 = hH1 hH1 = hH1 hH1 = hH1

hEh1 = hEh1 hEh1 = hEh1 hEh1 = hEh1 hEh1 = hEh1
hEh2 = hNo1 hEh2 = hNo1 hEh2 = hEh2 hEh2 = hEh2

14/18 14/18 16/18 18/18

leakage violates typical abstraction barriers, [1], [8], [9],
[10], [11] reference approximately 900 applications that use
a device’s IMEI, or the hashed IMEI, to provide a unique
pseudo-anonymous identifier for tracking and advertisements.
We improve on the methods identified by [11]; instead of
creating hash tables of all possible IMEIs, we instead use
temporal analysis to target specific IMEIs.

It is trivial to correlate an IMEI and a MAC address if
we can collect the IMEI from an application over 802.11. We
empirically test 16 mobile applications previously identified
to leak the IMEI on Android, iOS, and Windows Phone 7
operating systems [1], [9], [10], listed in Table X. Eight of the
sixteen Android applications leaked either the IMEI or hashed
IMEI. The remaining eight applications either did not leak
the identifiers or we failed to detect them in the traffic. We
found no iOS or Windows Phone applications that leak their
IMEI due to restrictions in place by both platforms that prevent
the application from accessing the IMEI [19], [20]. Although
tangential, we note that three iOS applications leak the Unique
Device Identifier (UDID).

D. Future Work
We intend to further our work by integrating 802.15

analysis techniques. We plan to study both pairwise (802.15-
GSM, 802.15-802.11) correlation and methods of correlating
all three identifiers. Future work in 802.11 and 802.15 iden-
tifier correlation will borrow from and enhance “Wi-Fi and
Bluetooth MAC Address One-Off” techniques [21].



TABLE X: Applications Leaking Device Identifiers
Android Leaks iPhone Leaks Windows Leaks
AutoRun n/a n/a
Assistant SHA1 Assistant Assistant

Classic Simon n/a n/a
Documents To Go 3.0 n/a n/a

Droid Jump n/a n/a
iHeartRadio IMEI iHeartRadio UDID iHeartRadio

KAYAK KAYAK n/a
Moco Chat, Meet, Games IMEI Moco Chat, Meet, Games MocoSpace
Moron Test: Old School IMEI Moron Test: Old School UDID n/a
Moron Test: Section 2 n/a n/a

Paper Toss Paper Toss n/a
Smart Simon MD5, SHA1 n/a n/a
SmartTacToe SmartTacToe UDID n/a

Starbucks Starbucks n/a
Video Poker MD5, SHA1 n/a n/a
Video Poker n/a n/a

White & Yellow Pages IMEI White & Yellow Pages White & Yellow Pages
Yellow Pages IMEI, MD5 Yellow Pages Yellow Pages

Future efforts should expand the breadth and scope of
mobile devices by collecting and analyzing CDMA identifiers,
such as the Electronic Serial Number and Mobile Equipment
Identifier (ESN, MEID). Similar to the GSM IMEI, the ESN
and MEID reserve bits that identify the manufacturer and serial
number, which may correlate CDMA devices [22].

Continued work should investigate a more principled
weighting algorithm, as opposed to the empirically derived
weights in this work. Better weight assignment may provide
more accurate correlation by overcoming instances where less
granular data conflicts with more granular correlation.

Last, we plan to investigate the application of feature vector
similarity matching to address the issues observed with iPh4
and iPh5 in §III-A.

IV. APPENDIX

To demonstrate the feasibility and power of our framework
in associating disparate hardware identifiers, we employed
simulated temporal and spatial data. In this subsection, we
illustrate that such collection is feasible.

A GSM device performs cell selection upon power-on,
monitoring Broadcast Control Channel (BCCH) messages to
determine the optimal radio frequency (RF) connection [23].
The mobile handset selects the cell with the highest C1 value,
where C1 is defined by 3GPP to be a function of device and
tower transmit power [24].

We wish to induce mobile devices to reselect from their
current cell tower to a rogue tower under our control. We
focus on cell reselection when the mobile device is in idle
mode to avoid complications with handovers and call routing
when a handset is engaged in an active phone call. In idle
mode, a mobile device will monitor BCCH parameters and
associated RF measurements of the relevant towers, to choose
a cell according to the C2 algorithm [23]. The Cell Reselection
Offset (CRO) is normally utilized by the network to handle
load balancing and encourages reselection to nearby towers
even if they are not the best RF path. A cell operates with a
CRO = 0 in typical scenarios, and thus C2 is calculated with
the same parameters as C1 [24].

C2 = C1 + CRO − (TempOffset ∗ PenaltyT ime)

In order to force the mobile phone to reselect to our rogue
tower, we transmit an abnormally high CRO on our BCCH
to induce reselection to our rogue BTS. OpenBTS [25] is one
possible implementation of a rogue BTS that can collect device
IMEIs. With the release of C2.8, OpenBTS supports the ability
to delineate the CRO setting. As each mobile device registers
with our tower, one can record the IMEI and then release the
mobile device back to the local network [2], [26].
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