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Scope of Talk

1 Motivation: Learning to operate in an increasingly complex and
malicious Internet

2 Challenges: Many at Internet-scale, in dynamic environment
3 Needed: Building-blocks for network and systems designers
4 Approach (And why we didn’t do X ): An IP Clustering Algorithm

as one building-block with many practical applications
5 Results: Predictive performance, including ability to detect

changed network portions
6 Future: What’s next, work building upon this research
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Internet-Scale Learning
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Internet-Scale Learning

Evolution of Internet Architecture

The Internet is a phenomenal success, but original assumptions
underlying its design have changed, e.g.:

Security ... historically a second concern

Trust ... in a world of botnets, phishers, etc

Scale ... traffic, routes, multi-homing, etc

Complexity ... policy constraints, network demands, economics

And it’s continuing to evolve, grow more complex. E.g.:

Scale along new dimension: bad hosts/users

Support increasingly critical services

Trend to content-based networking

Adding devices with intermittent connectivity (sensor nets, DTNs)
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Internet-Scale Learning

The Research Challenge

Apply statistical learning to embrace Internet’s natural complexity

Find predictive models: generalize to unseen data, new situations

Networking problems are a challenging learning environment:

Non-stationary

On-line

Distributed

Tradeoff between effort vs. improvement obtained vs. errors

Needed:
Building blocks to realize ML promise while mitigating challenges
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Defining the Problem
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Defining the Problem Overview

IP Clustering as a Building Block

Internet Protocol (IP) v4 addresses are unsigned 32-bit integers
e.g. 18.26.0.230

Hosts given addresses based on the network on which they reside

An IP Address Clustering Algorithm:

Supervised learning (describe change detection later)
Given (informally):

Training samples from a portion of the IP address space
Labeled with a real or discrete property (e.g. latency, security
reputation, etc)

Find a “good” partitioning of the space

Why?
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Defining the Problem Motivation

IPs as Identifiers:

For better or worse, IP addresses are overloaded. IPs serve as
identifiers for:

End hosts

Location in the network topology

Location in the physical topology

Implications of this conflation:

Security policy (firewalls, etc)

Reputation (spam sources, etc)

Service selection, load balancing, performance optimization (P2P,
CDNs, etc)

User-directed routing, grid computing, more...

For example...

R. Beverly, K. Sollins (MIT) IP Clustering SysML 2008 8



Defining the Problem Building Intuition

Practical Example: Internet Mail Server

Spam
Ham

Spam

SpamHam

???

0 2
32

Mail

Server

Assuming spam originates from “grouped” hosts/networks

Can a mail server build a predictive model of likely spam
sources/networks?
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Defining the Problem Building Intuition

Emulating Ideal World

Ideally, a “knowledge plane” would provide oracle information on
every node in the network

Unfortunately, the size (∼ 3B addresses, ∼ 300K networks) and
dynamics of the Internet generally precludes complete knowledge

Instead, leverage Internet’s inherent structure due to physical,
logical and administrative boundaries

How much structure exists?
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Defining the Problem Building Intuition

IANA /8 Allocations by Continent

IP addressing is
hierarchical

Discontinuous,
fragmented

Correct
granularity?

Hosts within same
sub network likely
have consistent
policy, latencies,
routes, etc.
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Defining the Problem Building Intuition

Learning Structure
Idea 1: Statically divide input space

Email server example:

Spam
Ham

Spam

SpamHam

???

0 2
32

Mail

Server
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Defining the Problem Building Intuition

Learning Structure
Idea 1: Statically divide input space

Email server example:

0 2
32

0 2
32

P(Spam|Struct) = 0.5 P(S) = 0 P(S) = 1
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Defining the Problem Building Intuition

Learning Structure
Idea 1: Statically divide input space

Email server example:

0 2
32

0 2
32

P(Spam|Struct) = 0.5 P(S) = 0 P(S) = 1

Issues:

Pre-supposes a structure;
we may want to infer this

Requires large amount of
memory to perform
decently

Static alignment with data
leads to inferior
performance compared to
other approaches
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Defining the Problem Building Intuition

Idea 2: Leverage network routing

IP Hierarchy and Aggregation:

Blocks (varying size) of contiguous addresses assigned to
networks (e.g. AT&T, UCSD, Level3, etc)

Aggregated unit: prefix/mask (defined precisely in paper)
E.g. 18.0.0.0/8 is a large prefix with 224 addresses

Smaller blocks are further sub-delegated (“smaller” prefixen)

Routers exchange aggregated prefixes, perform per-packet
longest-match forwarding to get packet closer to destination

Implication:

There’s an existing source of rich data

e.g. [Balachandar & Wang]

For example...
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Defining the Problem Building Intuition

Learning Structure
Idea 2: Leverage network routing

Email server example:

0 2
32
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Defining the Problem Building Intuition

Learning Structure
Idea 2: Leverage network routing

Email server example:

0 2
32

Sprint AT&T Qwest
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Defining the Problem Building Intuition

Learning Structure
Idea 2: Leverage network routing

Email server example:

0 2
32

Sprint AT&T Qwest

Seaworld HotelQualcomm

R. Beverly, K. Sollins (MIT) IP Clustering SysML 2008 17



Defining the Problem Building Intuition

Learning Structure
Idea 2: Leverage network routing

Email server example:

0 2
32

Sprint AT&T Qwest

Seaworld HotelQualcomm

Issues:

Inferior to more
sophisticated
approaches

Even if readily
available, typically at
wrong granularity

Similar problems in
using registry
databases
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Defining the Problem Takeaways

How to Best Learn/Exploit Structure?

Temptation to formulate network task into a learning problem (i.e.
use out-of-the-box “black-box” algorithms)

Often suboptimal
e.g. how to set thresholds, regularization parameter, kernel, etc?

How about Internet-specific learning algorithms?
Leverage domain-specific knowledge

Learn in a way amenable to non-stationary environment, on-line
directed learning

As Important:

Must be fast (ideally suitable for Internet core / high-speed routers)

Memory efficient (think FIBs not RIBs)
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Exploiting Network Structure
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Exploiting Network Structure Refining the Problem

Data Set

Latency Data Set

Reference data set drawn from
live Internet measurements

Use round-trip latency as per-IP
property (label)

Note algorithm isn’t specific to
latency prediction

Latency is evocative of many
structural properties (e.g.
latencies of sub-networks are
often a function of the network
to which they belong)

Live RTT Measurements:

IP1
IP2 N

IP

ping = RTT
N

ping = RTT
2ping = RTT1

Agent
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Exploiting Network Structure Refining the Problem

Data Set

Find: 30,000 random Internet hosts responding to ping

Gather: Average latency to each over 5 pings
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Exploiting Network Structure Refining the Problem

Black-block Performance

Let’s try out-of-the-box SVM regression:

Predict latency to unknown destinations

With lots of tuning, performs reasonably well; several insights from
feature selection
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Exploiting Network Structure Network Environment

What about the network?

Cool, but...

Highly (unnatural) parametric models?
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Exploiting Network Structure Network Environment

What about the network?

Cool, but...

Highly (unnatural) parametric models?

n
∑

t=1

αt −
1
2

n
∑

i=1

n
∑

j=1

αiαjK(φ(xi ), φ(xj )) s.t. C ≥ αt ≥ 0,

n
∑

t=1

αtyt = 0
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Exploiting Network Structure Network Environment

What about the network?

Cool, but...

Highly (unnatural) parametric models?

n
∑

t=1

αt −
1
2

n
∑

i=1

n
∑

j=1

αiαjK(φ(xi ), φ(xj )) s.t. C ≥ αt ≥ 0,

n
∑

t=1

αtyt = 0

Artificial geometries? (How “close” are 18.255.255.255 and
19.0.0.1?)

18.0.0.0/8 19.0.0.0/8
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Exploiting Network Structure Network Environment

What about the network (con’t)?

And...

Structural, temporal network dynamics?

When, how often to retrain?

On-line learning?

For Example, Latency Prediction:

Structural changes → new link, routing change

Temporal effects → congestion, time-of-day
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Exploiting Network Structure Network Environment

Change Point Detection

Change point detection:

Assume errors are normally distributed

Change from known initial world θ0 = N(µ0, σ)

To θ1, unknown µ1 change

Generalized Likelihood Ratio:

Perform double maximization, derivative:

gk =
1

2σ2 max
1≤j≤k

1
k − j + 1





k
∑

i=j

(xi − µ0)





2
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Exploiting Network Structure Network Environment

Change Point Detection

Change point detection:

Assume errors are normally distributed

Change from known initial world θ0 = N(µ0, σ)

To θ1, unknown µ1 change

Generalized Likelihood Ratio:
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Exploiting Network Structure Network Environment

GLR

GLR as a test statistic on our data

Learn model, predict, receive ground truth, update

Real data, synthetic errors begin at 1000th sample
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Exploiting Network Structure Network Environment

GLR

GLR traditionally used in operations management, etc.

In our environment, test error 6= train error

→ gk drifts positive

gk drifts with slope of β until change to β′
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Exploiting Network Structure Network Environment

GLR

Overcoming the drift effect

Take first derivative to get step function

Take second derivative to get impulse response
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gk drifts with slope of
β until change to β′

1st derivative step
function still requires
thresholding
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a constant is zero

Can now edge trigger
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R. Beverly, K. Sollins (MIT) IP Clustering SysML 2008 28



Exploiting Network Structure Network Environment

GLR

Result:

Decision function for predicting a change in a supervised learning
problem
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Take away: a principled
method to detect structural
network change
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Exploiting Network Structure A Network-Specific Algorithm

An IP Clustering Algorithm

Dynamics:

Incorporate dynamics into model

GLR provides a means to detect change

But what portion of the network?

Domain knowledge

IP address blocks are assigned on 2x boundaries

Can we incorporate this domain-specific knowledge?
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Exploiting Network Structure A Network-Specific Algorithm

An IP Clustering Algorithm

Induces a partitioning over an IP address space:

2
32

0

Maintain partitioning in a binary radix trie:

40ms

20ms

32/3

50ms

64/2

86ms

0/1

100ms

128/1

90ms

192/2
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Exploiting Network Structure A Network-Specific Algorithm

An IP Clustering Algorithm

Divisive formulation

Perform a t-test on permutations of 2i input partitionings

t−test, H0:? t−test, H0:? t−test, H0:?

Gives a strong statistical notion of whether points come from
same distribution, i.e. common latencies

Use t-test to drive partitioning; each partition inserted into radix
trie → longest prefix matching

Also an agglomerative version (build up)
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Exploiting Network Structure Maximal Prefixes

Maximal Partitioning

76.105.0.0 76.105.255.255

Partition from 76.105.64.0 to 76.105.255.255 is not valid
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Exploiting Network Structure Maximal Prefixes

Maximal Partitioning

76.105.0.0 76.105.255.255

Partition from 76.105.64.0 to 76.105.255.255 is not valid

Divide into 4 equally sized 214 prefixes?
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Exploiting Network Structure Maximal Prefixes

Maximal Partitioning

76.105.0.0 76.105.255.255

AS33651 AS7725 AS33490

Partition from 76.105.64.0 to 76.105.255.255 is not valid

Divide into 4 equally sized 214 prefixes?
No, example shows three different ASes:

76.105.0.0/18: Sacramento, CA
76.105.64.0/18: Atlanta, GA
76.105.128.0/17: Oregon

Take away: incorporate domain specific knowledge
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Results
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Results

Performance
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Results

An IP Clustering Algorithm

Advantages

A natural means to penalize model complexity

A natural means to bound memory

Accommodate change detection

Allows for active learning
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Results

Change Detection

0.0.0.0/1
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160.0.0.0/3

Change Detected?
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Results

Change Detection
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Results

Change Detection
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Results

Change Detection Accuracy
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Parting Thoughts

Further Research

Improving algorithm:
Agglomerative version has appealing properties
Address stability of optimal split in sequential t-test with a random
forest algorithm

Variability change point detection

Better understanding tradeoff between pruning stale data and the
cost of retraining

Perform active learning on poorly performing or sparse portions of
tree

Coping with adversarial agents that disrupt learning?
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Parting Thoughts

Summary

Learning useful for many problems in a complex Internet

But, must be cognizant of difficult issues when employing learning
in an Internet-context
IP Address Clustering is one building block with wide applicability

Learns underlying structure
Leverages domain-specific knowledge
Detects environment dynamics
Provides a means to penalize model complexity and memory in a
network-natural way

Thanks! Questions?
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Backup Slides

Backup Slides
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Backup Slides Background

IP Prefixes:
prefix/mask

p/m := [p, p + 2b−m − 1]

b = 32 for IPv4

p/m has 2b−m addresses
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Backup Slides Verifying Extant Structure

Examining the hypothesis of structure

Before trying to learn, let’s sanity check ⌣̈

d = |IP1 − IP2|, numerical “distance”

For a random pair of d -distant IPs, how well do their RTTs agree
given d?

Agent

IPIP1 2

ping = RTT1 ping = RTT2
i.e. Pr (RTT1 = ǫRTT2|d)?
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Backup Slides Verifying Extant Structure

Examining the hypothesis of structure

d = |IP1 − IP2|, numerical “distance”

Probability that the RTT of a pair of log2(d)-distant IP address
disagrees?
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Backup Slides Regression Performance

Feature Selection
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Backup Slides Regression Performance

Feature Selection
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Backup Slides Regression Performance

Feature Selection
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Backup Slides Regression Performance

Performance

Using Support Vector Regression

Predict latency to unknown destinations
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Backup Slides Regression Performance

Coping with Network Dynamics

Comparative Results:

Outperforms SVR approach

Does not require SVR parametric “tuning”

Linear lookup time in number IP address bits; fast in practice
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