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ABSTRACT
Measurement has become fundamental to the operation of
networks and at-scale services—whether for management,
security, diagnostics, optimization, or simply enhancing our
collective understanding of the Internet as a complex system.
Further, measurements are useful across points of view—
from end hosts to enterprise networks and data centers to
the wide area Internet. We observe that many measure-
ments are decoupled from the protocols and applications
they are designed to illuminate. Worse, current measure-
ment practice often involves the exploitation of side-e↵ects
and unintended features of the network; or, in other words,
the artful piling of hacks atop one another. This state of
a↵airs is a direct result of the relative paucity of diagnos-
tic and measurement capabilities built into today’s network
stack.

Given our modern dependence on ubiquitous measure-
ment, we propose measurability as an explicit low-level goal
of current protocol design, and argue that measurements
should be available to all network protocols throughout the
stack. We seek to generalize the idea of measurement within
protocols, e.g., the way in which TCP relies on measurement
to drive its end-to-end behavior. Rhetorically, we pose the
question: what if the stack had been built with measurability
and diagnostic support in mind? We start from a set of prin-
ciples for explicit measurability, and define primitives that,
were they supported by the stack, would not only provide a
solid foundation for protocol design going forward, but also
reduce the cost and increase the accuracy of measuring the
network.

CCS Concepts
•Networks!Network protocol design; Network mea-
surement; Network manageability;
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1. INTRODUCTION
The massive size of the Internet and its de-centralized na-

ture make nearly every facet of its structure and operation
complex and often opaque [9]. Complexity mixed with a
lack of visibility is problematic for not only network diag-
nostics, but also impacts protocol design and operation [16].
Further complicating the modern picture is the tension be-
tween measurability and the privacy and security concerns

of network operators, users, and third parties: di↵erent par-
ties may view measurability of di↵erent parameters of the
network either as essential, or as anathema to best practices.
TCP/IP includes several measurement and diagnostic ca-

pabilities that have evolved in an ad-hoc fashion over time.
For instance, ICMP [30] is in common use to assess reacha-
bility and latency, while other facilities are no longer com-
monly supported, e.g., IP’s Record Route [4] and timestamp
options [31]. Clever hacks such as traceroute and its vari-
ants [3] leverage IP’s protection against infinitely looping
packets to elicit router responses that reveal the forward
interface-level data path to a specified target. More convo-
luted measurements abound; two such examples are using
the IP identification field for alias resolution [5] and the
EDNS-client-subnet extension to map content distribution
networks (CDNs) [7].
TCP/IP also includes explicit in-band measurement mech-

anisms, for example TCP’s timestamp option [18] to assess
feedback time and Explicit Congestion Notification (ECN)
[33] to allow routers to signal congestion to end hosts. De-
spite these intended (and unintended) protocol hooks, the
measurability and accountability of the network has histor-
ically been a secondary design concern [9]. Retrospectively,
the diagnostic facilities currently available have proven woe-
fully inadequate for applications, operators, policy makers,
and researchers on the modern Internet in several ways:

• The diagnostics built into TCP/IP are useful for mea-
suring a few specific attributes of the network, but are
not germane to the breadth of understanding we now
desire. For instance, there is no ready way to explicitly
understand available capacity or packet manipulation
along some path, both of which are now more impor-
tant than when TCP/IP was developed.

• IP addresses are no longer useful as host identifiers for
many measurement purposes. Today’s Internet has
both multiple machines sharing an IP address (e.g.,
NATs, anycast) and single machines using multiple IP
addresses (e.g., routers, load-balancers). An interface
may have both IPv4 and IPv6 identifiers, and, in the
case of IPv6 privacy extensions, each IPv6 address may
be used only once or for a short time [29]. Beyond net-
work layer addresses, CDNs hide myriad hosts behind
a common name. Even resolving a hostname often in-
volves a mysterious chain of resolvers [39, 35].

• Today’s network forwards di↵erent types of tra�c with
di↵erent policies. Therefore, a measurement leverag-
ing a diagnostic like the ICMP echo mechanism may
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not be indicative of the experience of a web transfer.
This situation renders even experienced operators at a
loss when problems arise.

• Protocols and systems are increasingly reactive to net-
work conditions. For instance, mobile devices may pre-
fer WiFi networks over cellular networks when both are
available. Or, CDNs attempt to direct clients to the
“best” content replica. Or, the Happy Eyeballs tech-
nique [41] is used for assessing the quality of IPv6 ver-
sus IPv4 to reach a destination. While it is perfectly
reasonable to base operation on network conditions,
obtaining such understanding is an ad hoc and ardu-
ous process that is generally performed out-of-band
without any unified mechanism.

Over the years researchers—ourselves included!—have de-
signed increasingly complex and clever methodologies for un-
derstanding the operation of the Internet. This large body
of work unquestionably provides many insights into current
Internet reality. However, we find three issues with the cur-
rent state-of-the-art:

• Often techniques rely on inference and not direct mea-
surement. That is, we are forced to make assumptions
of varying dubiousness about the network, or how traf-
fic is handled by the network [26]. For instance, that IP
addresses represent unique machines. Or, that hosts
generate TCP acknowledgments quickly. Or, that a
vantage point “close” to an endpoint is “good enough”
to well understand the endpoint’s perspective. Even
more problematic, measurements face an increasingly
adversarial environment where honeypots and decep-
tion pollute our understanding [2], while increased de-
ployment of encryption [24] can remove visibility com-
pletely.

• We often use complex post-facto analysis to illumi-
nate various network behaviors. This leaves us with a
general understanding of some phenomenon, but not
a way to generate such understanding on-the-fly such
that it constitutes actionable information within some
system.

• The techniques we employ often exploit unintentional
behavior in order to coax information from the network
that operators may not wish to divulge. Simultane-
ously, operators are unable or unwilling to deploy or
use many of the techniques developed in the research
community.

In this position paper, we describe the In-Protocol Inter-
net Measurement (IPIM) facility. Rather than the point
solutions found in individual protocols or brittle tricks em-
ployed by researchers, we seek to identify a minimum set of
measurement primitives that generalize across a wide vari-
ety of use cases. IPIM is a proposal to take these primitives
and promote measurement to a first class citizen within the
network architecture.

We posit that by adding explicit measurement primitives
into the protocol stack, a broader and more accurate under-
standing of network behavior will be available to the proto-
cols themselves, applications, operators, developers, and re-
searchers. Further, this understanding will come at a lower
cost than attempting to leverage the current accumulation
of measurement hacks and assumptions.

2. A MOTIVATING EXAMPLE
As a brief motivating example we consider the di�culty

surrounding a seemingly simple task: round-trip time (RTT)
assessment. Latency is one of the fundamental properties of
network paths, having an impact on everything from when to
retransmit a packet within a reliable stream [27] to protocol
performance [25] to determining the magnitude and amount
of network congestion [21]. Indirectly, latency is also used
for geolocation and to direct queries among content caches.
RTTs can be measured out-of-band using ICMP’s echo

facility. While in some cases ICMP can provide accept-
able answers, it also presents three drawbacks: (i) ICMP
is often blocked as a matter of policy, rendering this tech-
nique useless, (ii) leveraging ICMP makes an assumption
that the network treats ICMP the same as other more user-
oriented tra�c such as TCP/HTTP and therefore that the
RTTs from ICMP measurements are germane for other traf-
fic types and (iii) when an out-of-band ICMP mechanism is
used within a larger system or protocol it represents addi-
tional complexity to develop and maintain.
An alternative approach is to utilize natural protocol in-

teractions to measure the RTT. For instance, we could lever-
age small DNS requests and responses or TCP data segments
and the corresponding acknowledgments (ACKs). The prob-
lem is that these interactions often include more than the
network latency. For instance, if a DNS request arrives at
a resolver that does not have the requested name in local
cache, then there will be additional time in iterating through
the DNS hierarchy (or some subset thereof) to obtain the
answer to the query. However, the contents of the DNS re-
sponse will be nearly identical regardless of the state of the
cache, leaving the requester blind to whether the RTT re-
flects the network path to the resolver or not. Of course,
the astute Internet empiricist will no doubt decide to pile
on another hack and send the same DNS request twice, us-
ing on the second request and its corresponding response as
the network RTT on the assumption that the first request
will prime the resolver’s cache—an assumption which may
or may not be true. However, even in the best case where
this second transaction is an accurate assessment of the net-
work path, the process reverts back to out-of-band measure-
ment since the naturally occurring DNS transaction is insuf-
ficient on its own. The same ambiguity plagues web-based
RTT measurements, where web content is today commonly
cached or proxied.
TCP is a canonical example of a protocol whose messages

allow it to infer path properties (including RTT estimation).
However, TCP must contend with a variety of complicating
factors including delayed ACKs [1], hardware acceleration
(e.g., o✏oad engines), and retransmitted segments. These
can skew RTT estimations by hundreds of milliseconds—
an error that can be of the same magnitude as the actual
RTT. TCP’s timestamp option [18]—an explicit timestamp
included by the sender in each segment and echoed back by
the recipient—helps resolve the retransmission ambiguity,
and we utilize a similar mechanism in IPIM to decouple host
and network latency.
While in-band measurement is powerful, DNS and TCP

well-illustrate the di�culties and subtleties in obtaining ac-
curate measurements via natural interactions. IPIM intro-
duces a set of primitives that provide more precise and less
inferential measurements, while increasing the space of mea-
surable network properties. These primitives are designed to
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generalize across a wide array of protocol, application, and
user needs (RTT estimation is but one use-case; § 5 details
additional application of IPIM). Improvements to IPIM can
then benefit a wider range of protocols, and free designers
from creating yet more point solutions.

3. PRINCIPLES
Although the original ARPANET contained extensive ex-

plicit support for measurement and diagnostics [11], mea-
surement in the Internet has long been viewed as a manage-
ment function decoupled from protocol design.

In our experience running and measuring networks, creat-
ing protocols, and observing the evolution of deployed proto-
cols and systems, several common themes among successful
designs have emerged. From these design trends we extract
a set of principles to guide our design of IPIM:

P1: Measurement should be explicit: This principle
is not unique to Internet measurement [28], but is especially
applicable to it. Many of the techniques applied in Internet
measurement rely on inference that is itself based on as-
sumptions about the reactions of protocol implementations
outside the control of the party performing the measure-
ment, assumptions that may or may not hold. For exam-
ple, stretch ACKs in TCP [1] invalidate basic assumptions
in passive latency measurement, and di↵erences between
the addresses of interfaces on which a packet is sent and
the addresses reported by routers in ICMP Time Exceeded
replies complicates the analysis of traceroute results when
studying data-plane topology. The only way to address this
problem is with facilities for measurement which state the
assumptions on which inferences are to be based explicitly.
Measurement facility explicitness also encourages adoption,
rather than the wholesale blocking of measurement tra�c
when administrators do not clearly understand what is be-
ing measured and what information is being shared. In P4,
we elaborate on providing hooks for user and administrator
consent.

P2: Measurement should be in-band: Modern In-
ternet paths represent a complex forwarding fabric whose
behavior is driven by a multitude of properties, including
tra�c type and content, policies, load, and the end sys-
tems involved. This makes out-of-band measurements in-
herently tricky. Often at least one of the properties the path
uses to make forwarding decisions will di↵er between op-
erational transactions and synthetic measurement tra�c—
leading to the measurement not faithfully capturing the
path’s true treatment of particular tra�c. In turn, this
impacts the insights we gain from such measurements in un-
known ways. Thus, measurement within a protocol is not
the same as out-of-band measurement. Therefore, faith-
fully understanding production tra�c calls for in-protocol
primitives.

P3: Measurement consumer bears cost: Designing
protocols to enable measurement and introspection inher-
ently imposes compute and memory requirements. We strive
for designs that minimize state and per-packet processing,
especially within the core of the network. Our goal is to col-
lect myriad small and simple bits of information provided
by end systems and routers to gain broad understanding
about the Internet. We then aim to concentrate the costs
of understanding these bits of information with the actor

interested in the measurement to the extent possible. As
an example, data collection can be probabilistic such that
measurement data is contained within only a subset of pack-
ets or flows. Situations requiring more granular, precise, or
representative measurements can in turn employ broader
or longer data acquisition. More generally, designing prob-
abilistic behavior into measurement primitives allows them
to be deployed with an explicit trade o↵ between accuracy
and overhead. This need not, however, limit the accuracy
or coverage of the measurements available, by shifting the
balance of e↵ort from the runtime measurement process to
a post-runtime analysis process.

P4: Measurement provider retains control: Within
the tussle space of measurement, operations, and security,
external measurements are frequently viewed as intrusive,
violations of policy or privacy, or simply unwanted. Appli-
cation developers, network operators, and end users must
have control over how much information is sent to the peer
and/or exposed to observers along the path. Control over
measurement at the endpoints also allows measurement fea-
tures to be selectively enabled in order to help diagnose
issues for specific tra�c flows.

P5: Measurement must be visible: The widespread
deployment of asymmetric routing implies di↵erent behav-
ior on the forward and reverse paths, and the opacity of one
or another of these paths to one-way measurements limits
the insight such measurements can provide. Therefore, the
ability of a packet recipient to echo information back to
the packet source is crucial to increasing visibility into the
path. The notion of visibility extends to P4, above. And,
while integrity over measurements is essential, particularly
in a world of network devices that transparently intercede,
encryption or data obfuscation should not be relied upon as
an enabler of measurements. More fundamentally, network
elements that cannot understand what measurements are
being made may universally block all such measurements.

P6: Measurement should be cooperative: The Inter-
net has diverged from a clean end-to-end model. Routers
and middleboxes on path actively manipulate the data plane,
and this design pattern can be extended to improve mea-
surement. Routers and middleboxes should participate in
measurement not just via their control plane, but also via
inspection and marking of the data plane.

4. PRIMITIVES
Having distilled the principles underlying the design of

IPIM, we now turn to sketching IPIM’s information model.
In this paper our goal is to sketch IPIM at a high level.
Therefore, we do not focus on details such as header lay-
out, information granularity, or counter sizes: a full protocol
specification is left to future work.
Prior proposals, e.g., [22], and standards, e.g., [36], define

new out-of-band protocols and mechanisms for path and de-
lay diagnostics akin to a more featureful ICMP. Instead,
our vision is broader—preferring to not only assess per-hop
characteristics, but allow for measurements to be taken as a
side-e↵ect of normal protocol interactions, and hence serve
as actionable input into protocol, network, and application
operation.
While we phrase these primitives in terms of information

the sender exposes to the receiver to allow both sides to
make measurements, we note that all of this information
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is available to passive observers as well. IPIM can thus be
used to expose information which can be passively measured
in aggregate. For example, a network border monitor can
observe end-to-end timing information (§ 4.1.2) to detect
and react to path changes or congestion via analysis of the
time series of latency among network pairs.

Note also that it is not necessary to provide all the in-
formation described in this section in each packet, or even
within each flow. Di↵erent uses of IPIM will require dif-
ferent types of information at varying granularity. There-
fore, IPIM’s use can be shaped for each specific need. For
example, flows could be selected with a given probability
to contain arrival information and hence provide a general
characterization of the path without involving all connec-
tions.

Finally, we do not claim this sketch is complete or optimal.
Instead IPIM is extensible such that additional information
can be included in the future as needs arise.

We start in § 4.1 by describing two primitives that op-
erate only end-to-end; i.e., that require no interaction with
devices along the path and can therefore be implemented
and deployed today. We then describe primitives that re-
quire cooperation from devices along the path. We consider
primitives that only require assistance from a subset of the
intermediate devices in § 4.2 and then move on to primitives
that require cooperation of more or less all devices along a
given path in § 4.3. While more di�cult to deploy, these lat-
ter primitives illustrate what is possible when including mea-
surement as a first-class citizen within the protocol stack.

4.1 End-to-End Information
We start with information that can be collected with only

the participation of the end systems.

4.1.1 Host Identification
Increasingly, IP addresses do not identify hosts. Load

balancers, anycast, IPv6, NAT, and the like frequently con-
found e↵orts that assume a host-to-address bijection. To
calibrate the measurements IPIM enables, we aim to un-
derstand precisely which host is involved in some commu-
nication by defining a host identification field H

id

. Host
identifiers have been explored extensively in the past; see for
instance literature on divorcing host identification from loca-
tion of attachment, e.g. [8] and references within. Whereas
this prior work uses such identifiers for discovery and deliv-
ery, our use is limited to measurements and not for tra�c
routing.

In many cases stable host identifiers are not problematic,
such as when identifying some replica of a service. However,
in other cases they could help track users across time and
attachment points. To balance measurement goals with pri-
vacy requirements, we o↵er two techniques to thwart track-
ing. First, H

id

will be modest in size—e.g., 16 bits—to
disambiguate multiple machines behind some common IP
address. That is, H

id

is not meant to be globally unique.
By the pigeon-hole principle, globally, or even behind large
NATs, there will be many hosts sharing the same H

id

and
so a given H

id

cannot be used to track a given host (or user)
over time. Second, since this identifier is meant for alias res-
olution, and not part of the data delivery process, it can be
changed often and according to an end host’s own policies
without external coordination. For instance, while H

id

must
be stable across connections and transactions to be useful,

H
id

could be randomly reset every 30 minutes and/or each
time the host joins a new network or obtains a new dynamic
IP address. Intentional identifier collisions combined with
regular random identifier rotation enables measurements to
disambiguate hosts, while still adhering to the security and
privacy principle P4. In cases where the population under
study is large and induces many identifier collisions, multi-
ple observations over time su�ce to probabilistically disam-
biguate by principle P3.

4.1.2 Timing Information
TCP’s timestamp option [18] points to a way to leverage

information within a protocol to understand latency. TCP
senders include both the current timestamp and the most
recent timestamp received from the peer when sending a
segment. In this way, a host can compare the echoed times-
tamp with the current time to determine the feedback time
upon each packet arrival. Beyond TCP, IPIM provides a
general mechanism for protocols, applications, and passive
observers, to utilize latency information.
As discussed in § 2, TCP’s mechanism su�ces for use

in determining the retransmission timeout (RTO), but for
measuring network properties a key deficiency is that the
latency measurements can include a non-trivial amount of
non-network induced time introduced by TCP’s delayed ACK
mechanism [1]. Therefore, simply taking the di↵erence of the
current time and the echoed time includes not only network
latency, but also host-based delay.
IPIM generalizes and improves upon TCP’s approach by

using a timing tuple (T
now

, T
echo

, T�), where T
now

is the
time the given segment was transmitted, T

echo

is the times-
tamp from the previous packet to arrive in this flow (con-
nection) and T� is the interval between when the previous
segment was received and the current segment is being trans-
mitted. This gives insight into the fraction of the round-
trip delay added by the end hosts. For instance, consider
a data segment sent by a host with T

now

= 45 and a cor-
responding ACK received at time 95 with a timing tuple of
(143, 45, 15). This tells us (i) the ACK was sent at time 143
according to the receiver’s clock, (ii) the full amount of time
between sending the data segment and receiving the ACK is
95�T

echo

= 95� 45 = 50, and (iii) the amount of network-
based delay in this case is 95�T

echo

�T� = 95�45�15 = 35.
Note that, following principle P3, this calculation requires
only a small amount of state to be kept at either endpoint
(i.e., the arrival time and T

now

from the last packet arrival).
Finally, in addition to raw latency, this timing tuple can have
additional uses—e.g., to understand how packets are spread
or compressed as they traverse the path for the purposes of
capacity assessment [13].

4.1.3 Arrival Information
Given the Internet’s “best e↵ort” nature, the source of a

stream of packets is given no information about their han-
dling by the network. Some reliable protocols like TCP build
machinery into the protocol that gives the sender some un-
derstanding of how the path is behaving—e.g., some notion
of the packet loss rate and/or packet re-ordering. TCP gives
the sender a rough understanding of these path properties
by using the acknowledgment stream as a crude form of the
echo facility we describe in P5 (§ 3). The ACKs give the
sender a view, albeit limited, into the arrival process at the
receiver. This same viewpoint is not naturally available for
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unreliable tra�c or tra�c for which reliability comes from
heavy coding of the packet stream such that receiver could
fix losses without involving the sender. In these cases, the
sender remains in the dark about the path’s treatment of the
packet stream. In IPIM we seek to better illuminate path
behavior across protocols and applications.

To understand arrival patterns, IPIM includes a nonce tu-
ple
(N

xmit

, N
sum

) roughly modeled after the“cumulative nonce”
from [34]. The sender populates N

xmit

with a random but
increasing value before transmitting the packet. The re-
ceiver simply sums (modulo the size of the field) the incom-
ing N

xmit

values and places that value in the N
sum

field
of its outgoing packets.1 In this way the sender can recon-
struct the arrival stream and pattern. For instance, consider
the case when a sender transmits three segments with N

xmit

values of 5, 1001 and 5800 and receives two ACKs in return
with tuples (45,5800) and (1376,5805).2 From the ACKs
the sender can conclude three things: (i) the ACKs were
not mis-ordered because the N

xmit

values from the receiver
are increasing (from 45 to 1376), (ii) the second segment
sent by the sender (with N

xmit

= 1001) was lost since it is
not included in the N

sum

3 and (iii) the first and third pack-
ets arrived out of order since the N

sum

reflects a packet with
N

xmit

= 5800 before including a packet with N
xmit

= 5. We
note that this mechanism does require state and processing
to understand the path properties. However, per P3 in § 3 we
lay this burden on the endpoint deriving the information.4

A recipient need only keep the current nonce sum and per-
form an add on each packet arrival.ÂăFinally, we note that
this mechanism also su�ces for identifying misbehaving re-
ceivers that are trying to coax the sender into transmitting
faster than normally allowed, which is the original intent of
the cumulative nonce in [34].

4.1.4 Integrity Information
A final piece of IPIM’s end-to-end information provides

an integrity check over the outgoing packet per principle
P6. We take inspiration from HICCUPS [10] and include a
basic integrity tuple (I

cover

, I
mode

, I
hash

, I
echo

), where I
cover

is an indication of which parts of the packet are covered by
the integrity check; I

mode

is an indication of which mode
the integrity check is using (see below); I

hash

is a computed
hash across the covered fields of the packet; and I

echo

is the
most recent I

hash

to arrive. The integrity check can use
several modes. First, the sender can compute I

hash

using
only a well-known hash function and information within the
packet itself. This allows the receiver to understand packet
manipulations, but also would allow a middlebox to trivially
re-compute the hash in a manipulated packet. A second

1This mechanism di↵ers from [34] in that only in-sequence
segments contribute to the nonce sum in the previous work.
2These values are chosen to be expository; a real system
would maximize information gain via coding.
3It is possible that the second segment was mis-ordered and
will be included in a future N

sum

. The sender will have to
wait for a long enough period of time to disambiguate loss
and reordering.
4Also, note, that if the sender uses a progression of val-
ues for N

xmit

that is not strictly random, but uses some
pattern of the source’s choosing then understanding N

sum

values that reflect loss and reordering may be easier than
just using strictly random values and then using brute force
to reconstruct the events.

mode calls for including a salt that only the sender knows in
the I

hash

value. While this mode prevents middleboxes from
re-computing the I

hash

, it also prevents the receiver from
directly understanding manipulations. A final mode calls
for computing I

hash

with a salt known to both endpoints
(and arranged out-of-band). While this allows the receiver
to understand manipulations while also preventing trivial
I
hash

replacement by middleboxes, it requires a shared secret
between the endpoints.
Note that I

cover

can vary over the course of a transaction.
While I

echo

can only give a binary indication of whether
the given packet fields have changed, across a natural flow
of packets with varying coverages, we can determine which
parts of the packets are being transformed by the network.

4.2 Hop-Specific Information
While end hosts can usefully illuminate many aggregate

path properties without directly involving the intermedi-
ate hops, we can often get additional or better information
by directly engaging these network elements (principle P6).
Adding a requirement that all routers and in-path devices
process all packets to assist with measurements is clearly
burdensome. Therefore, before discussing the types of in-
formation routers can provide, we introduce two strategies
for collecting hop-specific information, as follows.
Probabilistic Stamping: Using this strategy, a router first
samples a small fraction of the packets it forwards (princi-
ple P3). If a sampled packet includes an IPIM request for
information, the router fills in the requested information be-
fore forwarding the packet (see below for specifics about the
information that can be requested). The information from
the router is echoed back to the source by the final recipi-
ent. The router includes the current IP TTL in the stamped
information, which allows the sender to understand the rel-
ative location of the hop providing the information. The
sampling rate—which could vary depending on the load on
the router—allows routers to directly control the burden im-
posed by these measurements, or opt-out altogether (princi-
ple P3).
Triggered Stamping: We envision probabilistic stamping
to be useful in developing a general understanding of the
path and its properties. However, we introduce an addi-
tional technique to obtain information about a specific hop:
triggered stamping. In this scenario a target TTL is given
by the packet source and when the IP TTL equals the target
TTL a router stamps the packet with the requested informa-
tion. As above, the ultimate packet destination would echo
the information back to the source. This closely follows the
spirit of the ICMP Time Exceeded message which calls for
router action when the IP TTL reaches zero. IPIM simply
extends this to triggering action on a particular TTL value
and the information is then included in standard transac-
tions rather than out-of-band in an ICMP message.
Note, for either the probabilistic or triggered strategy, we

follow the “best e↵ort” principle and do not require routers
to participate. We aim to make participation fairly low
cost, but it will clearly be greater than simply forwarding
a packet. When measuring the system under heavy load a
tussle arises. On the one hand, this is a point where under-
standing and therefore measuring the system is particularly
crucial. On the other hand, we do not wish to exacerbate
operational problems for users. Therefore, we advocate a
system where each router can manage its own resources and
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decide what to provide and the end systems must cope with
incomplete information. Finally we note that while full de-
ployment by all hops is ideal, the design admits incremental
deployment and, where deployed, aids understanding of hop-
specific details of the network.

The per-hop information IPIM stamps in packets can take
several forms. Here we sketch two tuples, although more
could be added.

Topology Information: The first set of information routers
may stamp relates to topology. We define the follow-
ing topology tuple: (ID,AS, IP

A

, IP
D

), where ID is
a unique ID for the given router assigned by the router
owner, the AS is the autonomous system in which the
router resides and IP

A

and IP
D

are the IP addresses
of the interface the packet arrives and departs on, re-
spectively.

Performance Information: Routers may include perfor-
mance information by encoding the tuple: (T

now

, QL,AC,CL)
where T

now

is the current time, QL is the queue length
expressed as time,5 AC is the available capacity,6 and
CL is the current congestion level—which is meant to
be a finer grained version of ECN’s binary feedback.

In addition to the hop-specific information IPIM gains
each time a router stamps a packet, the information from
multiple packets can be combined to form broader under-
standing. Over time, the IPIM stamped tra�c will provide
the IP- and AS-level path over which the communication
traverses. Traditional topology ambiguities, such as the AS
to which a router belongs or the set of interface aliases, be-
come explicit per P1. Further, topology can be combined
with performance information to more deeply understand
how individual hops contribute to overall path properties,
as opposed to our current situation of attempting to infer
such information from suboptimal and sometimes dubious
sources of information [40].

A final note is that by providing space in a packet for
a single router to populate, we side-step the fragmentation
problem that results if routers are permitted to append in-
formation to the packet. That is, if each router were to add
topology information (a la IPMP [22]) the packet would grow
to the point of requiring fragmentation (or carry little, if any,
actual payload data). By allocating fields in the packet for
this information at transmission time we do not fall prey to
this problem.

4.3 Accumulated Path Information
Hop-specific measurements (§ 4.2) are designed to develop

an understanding of the specific hops that make up the path
over some period of time (and tra�c), not instantaneously.
We now add a third category of information that is not easily
developed using either or both of the strategies from the
previous two subsections: accumulated path information.
That is, information that spans multiple hops, but cannot be
understood without help from the routers. As with the rest
of IPIM, the set of accumulated path properties we measure

5Routers often have multiple queues that packets traverse
and QL should represent the aggregate queuing time for the
hop.
6Encoded in coarse terms, a la Quick Start [14].

is extensible, but in this initial work we consider two sets of
information, as follows.

Path Changes: The first set of information aims to give
an indication when the path between two endpoints
changes. For instance, this could inform a congestion
control scheme that it’s understanding of the network
path is out-of-date and needs to be re-learned. To un-
derstand path changes we introduce an evolution tuple
(E

cur

, E
echo

) that works similarly to the TTL. The
sender initializes E

cur

to some random value. Each
router R chooses some long-lived random o↵set O

R

and adds O
R

to E
cur

in each packet before forward-
ing, wrapping around on overflow. O

R

can be positive
or negative, and can be large relative to the range of
E. The receiver simply echos the value back in E

echo

field. The di↵erence between the starting E
cur

and the
received E

echo

at either endpoint should be constant
(regardless of exact starting point for E

cur

) for a path
that does not change. When a path change causes a
di↵erent set of participating routers to be seen, their
di↵erent O

R

values will alter the di↵erence the end
host observes.

Performance Information: We revisit the performance
information we develop in a hop-specific manner in
§ 4.2. Instead of focusing on a single hop at a time,
it will sometimes be useful to understand accumulated
state of all hops at about the same time. As an exam-
ple, previous work in Quick Start seeks to have routers
validate an initial sending rate for a flow [14]. This
means that each router must consider the target send-
ing rate in a packet and, if the rate is deemed too high,
lower the rate before forwarding the packet. With this
in mind we define a performance tuple (AC

min

, QL
sum

)
where AC

min

is the minimum amount of available ca-
pacity at any hop along the path (as in the last subsec-
tion, this could be coarsely encoded, a la Quick Start)
and QL

sum

is the total amount of queuing delay due
to participating routers.

Since the accuracy of accumulated path information in-
creases with the proportion of routers participating, there
are two additional considerations. First, it should be (rela-
tively) inexpensive for a hop to contribute information. In
particular, the information added to the tra�c should re-
main static over some period of time and not require per-
packet analysis. Further, as we sketch above, this should be
considered as “best e↵ort” information to which the router
can choose not to contribute when under high load. Fi-
nally, since we aim eventually to accumulate over all hops
in the path, we need some way to understand whether all
hops did indeed contribute. For this we borrow the Quick
Start strategy of using a TTL0 field which starts at some
random value and yields a TTL� = |TTL � TTL0

|. The
TTL0 is decremented by one by each router that considers
the accumulated information request. The destination of the
packet echos back the absolute di↵erence between the TTL
and TTL0. If the echoed di↵erence is equal to the initial
TTL� then all routers contributed to the accumulated path
information. This mechanism helps to explicitly calibrate
the information that comes back from the network so we do
not have to guess how much of the path contributes to the
measurement e↵ort.
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5. USE CASES
We next discuss a number of IPIM use cases. These are

not meant to be exhaustive, but rather are illustrative of the
breadth of the utility provided by the facility.

Protocol Adaptation: Applications, systems and the un-
derlying transport protocols often base their activities on
some understanding of the network path. Canonical exam-
ples include TCP’s algorithms for adapting the sending rate
to the network path’s current congestion level and CDNs
routing application tra�c to the best replica when neces-
sary. IPIM helps these cases in two important ways: (i) the
assessment of the network becomes a standard facility in-
stead of something that must be designed and built for each
use, which reduces the cost of each use of the information
and (ii) the granularity and accuracy of the information can
be better (e.g., congestion control reductions in the send-
ing rate can be tailored to the available capacity reported
instead of blindly halving the rate).

Network Mapping: In a network in which most routers
support IPIM, hop-specific information (§ 4.2) provides the
possibility to replace traceroute with explicit topology and
network structure discovery without traceroute’s perennial
drawbacks [40]: potential di↵erences in treatment between
traceroute packets and production tra�c, aliasing, and lack
of information about the reverse path. In particular, routers
that add IPIM topology stamps obviate the current expen-
sive and error-prone requirement to reduce IP interfaces re-
turned by traceroute to routers (the aliasing problem). Such
topology information is valuable to enterprises for manage-
ment and debugging, and invaluable to large providers seek-
ing to optimize content delivery speed and reliability.

Management: Many network management tasks ultimately
involve understanding how a network is operating at the
current time, determining whether the current performance
is problematic and, if so, taking steps to fix the underly-
ing issues. IPIM can assist the first two steps of this pro-
cess. A network that can monitor the performance-related
measurements—e.g., latency—carried on production tra�c
can develop a notion of the overall state of the network as
perceived by normal tra�c. This can in turn be used to de-
velop both a baseline performance expectation and therefore
deviations from this baseline.

Informing Policy: The role of regulation and policy in
shaping the Internet has steadily increased. Concerns over
network neutrality [19], reliability [32], consumer choice, and
competition [37] have risen to the forefront as the Internet
as become critical infrastructure. Policy and regulation are
best shaped by empirical observation and therefore IPIM is
particularly apropos in this space as it o↵ers the ability to
concretely expose and attribute network structure, behavior,
and the treatment of tra�c.

Data Centers: Large amounts of content and computing
are currently handled by data centers, which are often self-
contained homogeneous networks in their own right. These
environments may be early adopters of IPIM as a data center
often has stringent performance requirements and is under
a single administrative control structure, allowing IPIM to
be more easily deployed. IPIM can expose timing, capacity,
and delay information about production tra�c flows in order
to quickly adapt to real-time network conditions, load, and
faults.

6. PRACTICALITIES
While our goal in this work is to explore an architecture

that generalizes Internet measurements into a cohesive facil-
ity, we must be guided in part by eventual deployment con-
straints. Here, we discuss several practical considerations
for IPIM.

6.1 Overhead
First, we consider IPIM’s overhead. IPIM’s new function-

ality comes at an inevitable cost. We consider two aspects
of this cost in this initial work: (i) transmission overhead
(bits on the wire required in each packet) and (ii) the pro-
cessing costs in the devices that provide and process IPIM
information.

Packet Overhead: At first glance, adding measurement
information inline would seem to impose a prohibitive per-
packet overhead. However, three aspects of IPIM’s design
reduce this overhead to a modest per-packet cost. First, not
every communication will care about every network property
IPIM can assess. E.g., an application may wish to under-
stand latency and topology, but not available bandwidth or
middlebox interference. Therefore, at most only a subset
of IPIM’s capabilities will be brought to bear within each
flow. Second, periodic samples will often su�ce, eliminating
the requirement to place measurement information on every
packet. In line with P4, originators can provide or request
information be sampled per packet or per flow, depending
on their measurement requirements. This also means that
the measurements can be spread out such that each packet
contains a single kind of measurement. Finally, compact en-
coding of IPIM information can reduce overhead on those
packets containing measurement information while shifting
the cost of processing to the measurement consumer, in line
with P3. For instance, consider the timing tuple we intro-
duce in § 4.1.2: (T

now

, T
echo

, T�). This could be encoded in
a 32 bit field with each timestamp being allocated ten bits
and the two remaining bits being used to indicate the gran-
ularity of the timestamps. This would su�ce for the vast
majority of latency sampling tasks at a cost of less than
0.3% of the space of a typical 1500 byte packet.

Processing Overhead: As we sketch in P3 in § 3, one
of our design guidelines is that (i) most actors in the sys-
tem should provide simple information that does not require
significant new state and (ii) the beneficiary of the infor-
mation bears the burden of analyzing the measurements to
obtain high-level insight. This is especially important when
information is collected from intermediate nodes—switches
or routers. Therefore, our design often calls for “stamping”
packets with already known information instead of comput-
ing some new information and including that on the passing
tra�c. This packet manipulation is more akin to ECN mark-
ing of packets than, for instance, generating an entire new
packet (à la ICMP echo response or time-exceeded message,
which also impose higher transmission costs). Further, we
explicitly consider the information “best e↵ort” in that if
a node is resource constrained, IPIM will not pose further
cost. Finally, we design for nodes to act on information in
a probabilistic fashion so that nodes can ultimately enact
policy that bests suits their needs as they balance the load
imposed by IPIM with the node’s myriad other tasks.
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6.2 Information Location
There is a natural question of where to place the IPIM

information within packets. The principles and primitives
we describe stand without regard to where the information is
placed. However, P5 calls for IPIM information to be visible
to passive observation, so it needs to be easy for observers
to know whether a given packet contains IPIM information
and where it is located. Further, if in-path nodes such as
switches and routers are to e↵ectively participate in IPIM,
this information must appear at a fixed, or at least constant-
time computable, location within the packet.

Ideally, we would build a thin measurement layer between
the network and transport layers. This is a clean approach
that satisfies the above criteria. However, wedging a new
layer into the protocol stack may be too high of a burden
for existing stacks and network devices. Another possible
location is building IPIM into the network layer, via exten-
sion headers within IPv6 (or IP options within IPv4), though
the deployability of such headers is questionable [15]. Un-
derstanding the pros and cons of these two approaches will
be one of the crucial first tasks as we move from a conceptual
design to an instantiated system.

Regardless of the location of the information, we note that
the originator will need to build space into packets to carry
any information provided by in-path devices. This is an
important consideration as increasing packet sizes during
transit may require fragmentation which would make IPIM
practically unworkable.

6.3 Incentives
The current ad-hoc use of inferences to drive the operation

of the Internet illustrates that measurements are crucial and
the e↵ort to obtain information about operational networks
is significant. Hence, the benefits of IPIM are clear. As de-
tailed in our use cases (§ 5), IPIM benefits not only network
operators, but also researchers, policy makers, applications,
and, ultimately, users. However, IPIM still must overcome
not only the inertia facing any new technology, but must
present a compelling advantage.

Instrumentation and measurement is now common in data
centers, among providers, and even within enterprises to in-
crease performance, reliability, and utilization—all of which
are driven by strong economic incentives. IPIM would pro-
vide a standard mechanism for all nodes, applications, and
users to perform detailed introspection for their own ben-
efits. And while some parties may be naturally adverse to
exposing any information, IPIM’s design for explicitness and
control admit a wide range of policies.

We believe IPIM’s design o↵ers a promising path for more
closely integrating measurement into protocol design. First,
via P3, IPIM is designed so that most of the actors sim-
ply provide small bits of information—leaving the consumer
to bear the analysis costs. Second, the primitives are in-
dependent and therefore can be implemented and deployed
without a burdensome amount of unwanted complexity. For
instance, the end-to-end timing primitive (§ 4.1.2) can be
adopted without the primitive that provides arrival informa-
tion (§ 4.1.3). The history of protocol transitions shows that
such functional independence is crucial to adoption. Tech-
nologies that require coordinated deployment by a multitude
of actors to gain any benefit tend to be di�cult to deploy
(e.g., IPv6 [12], ECN [20]). Third, as we argue in § 6.1,
IPIM’s overhead is low enough that it does not present a

barrier to entry. Finally, IPIM does not need ubiquitous de-
ployment to provide benefit. This manifests in a number of
ways: (i) endpoints can leverage the end-to-end primitives
without any assistance from intermediate routers, (ii) end-
points can derive benefits from IPIM if only some of their
peers support the facility and (iii) incomplete information—
such as might come from only some routers along a path
supporting IPIM—is still better than the current void of
information.
We also note that deployment of new technologies is easier

within certain subsets of the Internet. For instance, within a
homogeneous network under unified administration, such as
many data centers, fairly radical changes to the end points,
routers, and protocols can be undertaken. Data center net-
works and virtualized, software-defined networks increas-
ingly rely on measurements to operate e�ciently. Uptake
within such specialized networks may drive implementation,
and in turn, availability of IPIM hop-specific and path ac-
cumulating primitives on the Internet at large.
Finally, we note that as new technologies emerge they

inevitably change the surrounding ecosystem. In particular,
adoption of a facility like IPIM may be driven by the loss
of functionality as our protocols evolve. For example, the
passive timing and arrival inference possible with traditional
protocols like TCP are no longer available with protocols
that radiate less information by design, such as QUIC [17],
rendering traditional techniques useless.

6.4 Adversaries
A final practical consideration involves coping with adver-

saries that aim to provide bogus information within IPIM.
Since we piggyback IPIM on normal transactions, we get sig-
nificant protection from blind, o↵-path attacks by ensuring
we do not consider IPIM information from invalid packets.
That is, if a protocol would naturally discard a segment—
e.g., a TCP segment not within the current window—the
IPIM information should similarly be discarded. This leaves
adversaries that are either legitimately involved in the com-
munication or that can actively modify packets as they tra-
verse the network. For instance, an ISP providing perfor-
mance information may decide to report a queue length that
is smaller than the actual queue length to hide the pres-
ence of bu↵erbloat in their network. Or, consider ISP1 that
wishes to make a competitor, ISP2 look bad. ISP1 can
increase the queue length reported by ISP2 in tra�c as it
passes through ISP1.
One way to deal with this situation is to cryptograph-

ically sign and/or encrypt IPIM information. Encryption
runs counter to P5 which dictates visibility into the IPIM in-
formation. While signatures are possible, they are not fool-
proof and will likely end up burdensome. First, signatures
do not help with the case where a legitimate information
source simply provides bogus data. Second, soundly estab-
lishing trust in the huge number of keys associated with the
peers of a host or network will be a significant undertaking
in the best case.
Therefore, we intend to deal with adversaries using IPIM’s

data collection, statistics and discrepancy detection. For
instance—to continue the example from above—if we only
observe ISP2 advertising a large queue when the tra�c also
traverses ISP1 then we can start to treat these data points
with some skepticism. Similarly, finding queue length adver-
tisements along a path that suggest a significantly di↵erent
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end-to-end latency than we measure via the timing tuple we
can start to view the information speculatively.

7. CONCLUSIONS AND FUTURE WORK
The importance of network measurement continues to grow

to cope with the complex and tangled mess that is the mod-
ern Internet. Researchers and operators cleverly leverage
various artifacts in network technologies to assess the net-
work and in turn be more e�cient, improve performance,
and better understand the Internet’s behavior and opera-
tion. We assert that the time has come to think about mea-
surement as a first-class piece of the network architecture,
rather than embodied in a series of hacks. We o↵er IPIM as
a first step toward this goal. The primitives we define are
intentionally not complicated, and embody a set of princi-
ples formed from operational and research experience. The
small bits of explicit information in IPIM can be combined
to form the basis of sound network assessment, which is too
often the opposite of the current state of making inferences
from whatever information can be gleaned from error-prone
and convoluted techniques. While admittedly modest, our
hope is to advance a process that we believe needs to be
undertaken for the continued evolution of the Internet.

We leave protocol definition and implementation details of
each primitive as future work. However, we note that work
is underway within the IETF [38] to define a new layer in
the protocol stack into which IPIM can be slotted. Further,
the advent of programmable networks, e.g., OpenFlow [23]
and P4 [6], may provide a ready avenue to rapidly deploy
and test IPIM.
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