Experience in using Mechanical Turk for Network Measurement

Gokay Huz (NPS), **Steven Bauer** (MIT), kc claffy (CAIDA), Robert Beverly (NPS)

ACM SIGCOMM C2B(I)D Workshop August 21, 2015

The Problem: Internet Measurement

- Internet measurement is hard:
 - Network is large, complex, and dynamic
 - Not designed to be measured
 - Inherent security and privacy concerns
- Key concern: passive or active vantage point
 - Can strongly influence resulting data / inference
 - But, researchers typically have access to few VPs

The Problem: Internet Measurement

- Internet measurement is hard:
 - Network is large, complex, and dynamic
 - Not designed to be measured
 - Inherent security and privacy concerns
- Key concern: passive or active vantage point
 - Can strongly influence resulting data / inference
 - But, researchers typically have access to few VPs

Obtaining representative and sound Internet measurement datasets is challenging

Vantage Points (VPs)

- For network research, more VPs useful:
 - During exploratory phase, collect data from interesting/varied locations
 - For large, Internet-wide studies to collect as much data as possible
 - When attempting to validate or correlate results obtained from other methods/tools
- Crowdsourcing is a means to obtain more VPs

Crowdsourced Network Measurement

- Prior work has leveraged crowdsourcing for network measurement e.g., [Choffnes10, Bischof11]
- Our work examines Amazon's Mechanical Turk (MTurk):
 - Traditionally used for Human Intelligence Tasks (HITs), not measurement
 - E.g., surveys, annotation/labeling, psychology
 - Instead, we create network measurement HITs

MTurk Measurement HITs

- We experimented with three HITs:
 - Broadband speed testing from select VPs (exploratory)
 - 2. Testing a network security property (large scale collection)
 - 3. IPv6 adoption (validation)
- We obtained IRB exemption from our institution
- While our results are mostly anecdotal, we hope these initial experiences are valuable for future measurement research

Broadband Speed Test

- Residential broadband speed testing has seen significant recent work (Speedtest, NDT) and research [Bauer10]
- We wished to understand the performance of new, very high speed broadband links (100Mbps – 1Gbps), e.g., Google Fiber
- However, we had no measurements and no access to any VPs on these networks
- Exploratory solution: targeted HITs

Spoofer Testing

- Understanding the susceptibility of the Internet to spoofed-source attacks is critical
- Prior work [Beverly09] solicited volunteers to run the Spoofer testing tool
- More measurements from more VPs would increase the soundness of the results
- We created a HIT that required workers to run the Spoofer tester and report results

(Not) Testing Spoofing

- Prior work [Christin12] similarly required workers to download and run an executable
- Within hours, our HIT was reported and removed:
 - Christin too was removed, but then unblocked
 - We had no such luck when contacting Amazon

(Not) Testing Spoofing

ToS:

- Forbade "HITs that require workers to download software"
- Since relaxed to: "HITs that require workers to download software that contains any malware, spyware, viruses, or other harmful code"
- Suggests that researchers may be more successful in enlisting workers to run software HITs in the future

IPv6 Adoption

- Prior work has investigated IPv6 adoption
- Our goal:
 - Embed measurement within a HIT
 - Where the actual work of the HIT is incidental to the measurement we're collecting
 - Analyze the distribution of networks running our HIT
 - Compare to other IPv6 adoption results

IPv6 Measurement HIT: Ball Counting

 User is given a random number of red and blue balls. For example:

How many red and/or blue balls do you see on the page?

If you do not see any red/blue balls, that's perfectly fine. Just pick 0 (zero) from the list

IPv6 Measurement HIT: Ball Counting

- We host the URL for the balls
 - Red balls availabile via IPv4 only
 - Blue balls available via IPv6 only
 - The blue ball URL is a function of the user's IPv4 address
 - http://ipv6.example/img.php?1.2.3.4
- For a user with IPv6 connectivity, our web server logs:

```
2001:dead::beef:cafe - - [11/Mar/2014:01:17:36] "GET /img.php?1.2.3.4 HTTP/1.1" 200 37977 "http://ipv4.example/?assignmentId=XXXXXX &hitId=YYYYYY&workerId=ZZZZZZZ"
```

Allowing us to match the client's IPv4 and IPv6 addresses

Results

- Next, we present result highlights
- These initial results intended to describe our experience and generate discussion
- See paper for more details...

A New Form of Bias: Worker Networks

- Among IPv4 workers:
 - 322 (60.8%) of workers geolocate to US
 - 148 (27.9%) geolocate to India
 - 58 (11.3%) geolocate elsewhere
- Among 37 IPv6 capable clients:
 - 20 used Teredo or 6to4
 - 17 geolocate to US
- Suggests:
 - Homogeneity in countries and networks from which researchers can expect measurement results
 - Difficulty in obtaining diverse VPs

Previewing HITs

- We obtain measurement results when workers preview our HIT:
 - Generates HTTP fetches required for IPv6 adoption inference
 - Without completing HIT or providing compensation
 - Unintentional; interesting incidental finding

Over constrained HITs

- Further, we find that it is possible to create over-constrained HITs:
 - E.g., worker must be in both Japan and US
 - Workers cannot accept or perform HIT
 - Workers therefore cannot be compensated
 - However, workers still preview HIT, generating measurements
- Suggest that Amazon fix to prevent

Limitations and Future Work

- While we find a general lack of geographic and network diversity, in the future we need to control for time-of-day and native language
- We plan to attempt our spoofer measurement again, after discussing with Amazon
- We are currently experimenting with other measurements using MTurk, including IP geolocation and DNSSEC validation

Thanks!

• Questions?