
Server Siblings: Identifying Shared IPv4/IPv6

Infrastructure via Active Fingerprinting

Robert Beverly1, Arthur Berger2

1 Naval Postgraduate School, Monterey, CA
2 MIT CSAIL / Akamai, Cambridge, MA

rbeverly@nps.edu, awberger@csail.mit.edu

Abstract. We present, validate, and apply an active measurement tech-
nique that ascertains whether candidate IPv4 and IPv6 server addresses
are “siblings,” i.e., assigned to the same physical machine. In contrast to
prior efforts limited to passive monitoring, opportunistic measurements,
or end-client populations, we propose an active methodology that gen-
eralizes to all TCP-reachable devices, including servers. Our method ex-
tends prior device fingerprinting techniques to improve their feasibility
in modern environments, and uses them to support measurement-based
detection of sibling interfaces. We validate our technique against a di-
verse set of 61 web servers with known sibling addresses and find it to be
over 97% accurate with 99% precision. Finally, we apply the technique
to characterize the top ∼6,400 Alexa IPv6-capable web domains, and
discover that a DNS name in common does not imply that the corre-
sponding IPv4 and IPv6 addresses are on the same machine, network,
or even autonomous system. Understanding sibling and non-sibling rela-
tionships gives insight not only into IPv6 deployment and evolution, but
also helps characterize the potential for correlated failures and suscepti-
bility to certain attacks.

1 Introduction

While significant prior research has characterized the evolution, routing, and
performance of IPv6 [6, 15, 5], less attention has been given to understanding
whether IPv6 infrastructure is being deployed using separate hardware or by
adding IPv6 to existing machines. I.e., are providers using separate IPv4 and
IPv6 servers to host the same web content, or using single “dual-stacked” servers?

Given an IPv4 and IPv6 address, we seek to infer whether they belong to
interfaces on the same physical machine. We term such cross-protocol associated
addresses server “siblings.” To accurately determine sibling and non-sibling re-
lationships, we leverage prior work on device fingerprinting to perform active
measurements of TCP option signatures (coarse-grained) [10] and TCP times-
tamp clock skew (fine-grained) [9].

The prevalence of shared IPv6 infrastructure has important policy and Inter-
net evolution implications [3]. Moreover, for network operators and researchers,
the way in which IPv6 is deployed has particular impact on measurement and se-
curity. A potential, future application for the methods herein is for IPv6 geoloca-
tion, where prior knowledge of the corresponding IPv4 sibling can be leveraged.

Note that making such inferences based on a common Domain Name System
(DNS) name can be dubious. As shown in Section 4, a DNS name in common
does not imply that the IPv4 and IPv6 addresses are on the same interface,
machine, or even autonomous system (AS).

A second area of interest is IPv6 security, as the deployment and maintenance
of firewalls, filtering, and intrusion detection systems on IPv6 lags, while tunnels
and transition mechanisms facilitate alternate data paths for application-layer
attacks. Furthermore, not only are many old IPv4 network-layer attacks feasi-
ble in IPv6, IPv6 introduces new attack vectors [7]. The extent to which IPv4
infrastructure depends on IPv6, and vice-versa, therefore has unknown security
implications. Whether an attack against the IPv6 address of an Internet web or
DNS server impacts an organization’s corresponding service for IPv4 depends
on whether it is dual-stacked. Further, dual-stacked servers imply the potential
for correlated failures that impact survivability.

Toward identifying shared IPv4/IPv6 infrastructure, our contributions are:
1. A reappraisal of the current feasibility of Kohno’s 2005 physical device fin-

gerprinting [9] method using TCP clock skew.
2. Integration to, and enhancement of, various fingerprinting methods to ac-

tively, rather than passively, associate IPv4 and IPv6 server addresses.
3. Evaluation on ground-truth data, with > 97% accuracy and 99% precision.
4. Real-world measurements of siblings and non-siblings among the Alexa top

websites, characterizing a portion of Internet IPv6 infrastructure.

2 Background

Inferring IPv4 and IPv6 host associations has largely been confined to client pop-
ulations using passive, opportunistic measurements. For instance prior projects
have used web-bugs, javascript, or flash object to determine the prevalence of
IPv6 connectivity and associate IPv4 and IPv6 addresses of connecting clients
[17, 14]. In contrast our technique is active and we study servers.

Our prior work also examines IPv4/IPv6 associations, but is limited to DNS
resolvers [2]; the techniques herein are more general and can be performed ac-
tively, on-demand. By operating at the transport layer we can actively probe
any listening TCP service to test whether a candidate IPv4 and IPv6 address
belong to the same device.

At its heart, our work relies on the rich history of prior research in net-
work fingerprinting. Network fingerprinting is a common technique that relies
on implementation and configuration-specific characteristics to uniquely identify
devices. We leverage the fact that any application or transport-layer fingerprint
will be common to the lower level network protocol, whether IPv4 or IPv6.
We use coarse-grained active operating system (OS) fingerprinting, e.g. [10], to
eliminate clearly unrelated IPv4 and IPv6 addresses. However, OS fingerprinting
alone does not provide sufficient granularity to accurately classify true siblings
as the set of possible OSes is small relative to the set of possible addresses.

We therefore leverage previous work on physical device fingerprinting [9].
Kohno’s technique measures a machine’s clock drift by obtaining TCP-layer

Table 1. Properties of the four datasets probed

Dataset Hosts # v4 AS # v6 AS Countries # Option Signatures

1) Ground Truth 61 34 34 19 13

2) Alexa embedded 1050 85 80 31 30

3) Alexa non-CDN 1533 629 575 69 73

4) Alexa CDN 230 59 55 18 29

timestamps from the remote machine. While this technique has been used in
the past, we apply it in a new context and reappraise its feasibility 10 years
later. More importantly, skew-based fingerprinting has been primarily used on
network clients, rather than servers. We find several interesting server-specific
behaviors, e.g. load-balancing, that we take into account. Second, we enhance
and combine the technique with other fingerprinting methods. We then evaluate
the accuracy of our technique on a distributed set of ground-truth web servers.
Last, we apply the method to the new problem of actively interrogating remote
IPv4 and IPv6 endpoints over TCP to determine if they are server siblings.

3 Methodology

Our methodology uses active fingerprinting at the TCP layer, as a host’s TCP
stack is common to both the underlying IPv4 and IPv6 stack. We combine several
of such fingerprinting techniques to achieve the best accuracy. Our resulting
active method can be run on-demand to provide a server sibling test.

A networked server may have one or more interfaces, each with one or multi-
ple addresses. An interface’s addresses can be IPv4, IPv6, or a combination. Our
TCP fingerprinting techniques attempt to determine whether a given IPv4 and
IPv6 address share a common TCP stack. If the determination is “yes,” then
we are confident (see §4 on ground truth) that the two address are on the same
server (and in practice likely the same interface), and we classify the address
pair as siblings. If the determination is “no,” then we are confident that the
addresses are on separate interfaces, and most likely separate machines, and we
classify the address pair as non-siblings.

3.1 Datasets

This work considers four datasets shown in Table 1. First, a ground-truth dataset
(1) where the IPv4 and IPv6 addresses are known to be co-located on the same
dual-stacked host. Then, for the subset of the Alexa [1] top 100,000 sites with
both A and AAAA records in the DNS, we partition into set (2) sites where the
IPv4 address is embedded in the corresponding IPv6 address. And for sites not in
(2), partition into datasets: (3) those not part of a Content Distribution Network
(CDN), and (4) those part of a CDN.

To develop and refine our association inference algorithm, we utilize ground-
truth data consisting of 61 hosts with known IPv4/IPv6 association. While this
set is relatively small, it spans 34 ASes and 19 countries. Importantly, it allows us
to test not only our algorithm’s recall (ability to identify true siblings), but also
its precision (ability to identify ∼1,800 possible combinations of non-siblings).

We query the DNS for the A and AAAA records of the Alexa hosts as retrieved
in April, 2014. If the query returns multiple DNS records, we retain only the
first. We perform the DNS resolution only once in order to obtain the IPv4 and
IPv6 addresses. The remainder of our experimentation involves directly probing
IPv4 and IPv6 addresses; the DNS is not subsequently consulted as to avoid
dynamics due to DNS or DNS load-balancing.

A total of 6,387 sites in the Alexa top 100,000 have both IPv4 and IPv6
addresses. We remove 22 sites that return non-global IPv6 addresses, e.g. “::.”
Because multiple sites can be hosted on one server, we reduce this set to 3,986
unique IPv4/IPv6 address pairs. Further, since the Alexa list is comprised of
popular web sites, these sites are frequently part of a CDN.We observe that many
sites use anycast, as inferred by collecting RTTs from geographically dispersed
vantage points and finding those sites with RTTs that are not physically possible
without anycast. We remove these sites from our analysis as to not conflate the
effects of anycast with our inferences, leaving 2,813 unique address pairs.

When part of a CDN, the same website is often hosted on multiple machines
distributed across sites or geographic regions. We therefore separate the Alexa
hosts into those that are part of a CDN versus those that are not. To distinguish
CDN site, we query the DNS for the site from five geographically dispersed
vantage points. If we obtain different A or AAAA records from multiple vantage
points, we label the site as belonging to a CDN. In addition, if the site’s DNS
CNAME corresponds to a well-known CDN, we place it in the CDN dataset.

Last, we create the “embedded” dataset. In practice, IPv4 addresses are
frequently embedded in IPv6 addresses in different ways. We include instances
where the IPv4 address is embedded as four bytes, e.g. 162.159.243.37 and
2400:cb00:2048:1::a29f:f325, or where the IPv4 base-10 representation is
used as a base-16 sequence, e.g. 142.8.72.175 and 2a01:f1:d0:dc0:142:8:72:175.

Table 1 characterizes the distribution of hosts in each dataset, including the
number of IPv4 and IPv6 ASes they represent as inferred from the routeviews
global BGP table [12] from the same day as our Alexa site list (April 14, 2014),
as well as the geographic distribution as determined by maxmind [11].

3.2 TCP Option Signature

Modern TCP stacks make common use of TCP options, especially options in [8].
While options are standardized, the order and packing of those options is imple-
mentation dependent, thereby providing a well-known operating system-granularity
fingerprint [10]. For example, FreeBSD in our dataset returns: <mss 1460, nop,

wscale 3, sackOK, TS> whereas a Linux machine returns: <mss 1460, sackOK,

TS, nop, wscale 4>.

To form the signature, we preserve the option order, and strip the integer
value of the MSS and timestamp options. While the IPv6 MSS is frequently
20 bytes less than the IPv4 MSS (to accommodate the extra 20 bytes of IPv6
header), this is a loose rule in our ground-truth. Some hosts connect via tunnels,
with a lower IPv6 MSS, while some hosts support jumbo-grams only for IPv4.

-70

-60

-50

-40

-30

-20

-10

 0

 10

 20

 30

 40

 0 200 400 600 800 1000

ob
se

rv
ed

 o
ffs

et
 (m

se
c)

measurement time(sec)

Host A (IPv6)
Host B (IPv4)

α=0.029938 β=-3.519
α=-0.058276 β=-1.139

(a) Non-Siblings (Different Hosts)

-70

-60

-50

-40

-30

-20

-10

 0

 10

 0 200 400 600 800 1000

ob
se

rv
ed

 o
ffs

et
 (m

se
c)

measurement time(sec)

Host A (IPv6)
Host A (IPv4)

α=-0.058253 β=-1.178
α=-0.058276 β=-1.139

(b) Siblings (Same Host)

Fig. 1. Timestamp drift of candidate siblings.

While coarse-grained, the variability of the TCP options signature provides
a good first-order filter. Table 1 reports the number of unique TCP option sig-
natures observed for each of the datasets.

3.3 TCP Timestamp Skew

Define a candidate pair as (I4, I6). We periodically connect to a running TCP
service on I4 and I6 and negotiate the TCP timestamp option [8]. We receive a
sequence of time-stamped packets along with their arrival time relative to our
prober. Let t4i be the time at which the prober observes the i’th IPv4 packet
from I4 and t6i be the observed time of the i’th IPv6 packet from I6. Similarly,
let T 4

i and T 6

i be the timestamp contained in the TCP options of the i’th packet
from I4 and I6 respectively. Following the technique in [9], for each IPv4 packet
we compute the observed offset or skew : s4i ≡ (T 4

i − T 4

0
)− (t4i − t4

0
) and likewise

for each IPv6 packet, s6i ≡ (T 6

i − T 6

0
)− (t6i − t6

0
).

Given a sequence of skews, we compute drift via the linear programming
solution in [13] to determine a line that is constrained to be under the data
points, but minimizes the distance to the data points. We obtain:

y4 = α4x+ β4 and y6 = α6x+ β6

I.e., two lines, one corresponding to the interrogation of I4 and one to I6 that
lower-bounds the set of offset points observed. The angle θ between them is:

θ(α4, α6) = tan−1

∣

∣

∣

∣

α4 − α6

1 + α4α6

∣

∣

∣

∣

If θ < τ , then I4 and I6 are inferred to be siblings, where τ is a threshold.
Empirically, we find that τ = 1.0 degree is sufficiently discriminating.

Figures 1(a) and 1(b) illustrate the approach using two hosts for which we
know their ground-truth interface addresses. Figure 1(a) displays the observed
drift from interrogating Host A’s IPv6 interface as compared to Host B’s IPv4
interface. We observe not only different drift, but see that the clocks on the
respective host are drifting in opposite directions and have different resolutions.
Hence, we infer that the IPv4 and IPv6 interfaces are non-siblings (θ ≥ τ).

In contrast, Figure 1(b) displays a sibling relationship. In this experiment,
we probe the same host (A) via its IPv4 and IPv6 interfaces. We observe nearly
identical inferred skew (the linear programming solution determined as α4 =
−0.058253, β4 = −1.178 and α6 = −0.058276, β6 = −1.139; θ = 1.3× 10−3).

-6

-4

-2

 0

 2

 4

 6

 8

 10

 12

 14

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500

O
bs

er
ve

d
of

fs
et

 (
m

se
c)

Measurement time (sec)

IPv4 probes
IPv6 probes

(a) Negligible Drift

 0

 100000

 200000

 300000

 400000

 500000

 600000

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500

O
bs

er
ve

d
of

fs
et

 (
m

se
c)

Measurement time (sec)

IPv4 probes
IPv6 probes

(b) Siblings

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500

O
bs

er
ve

d
of

fs
et

 (
m

se
c)

Measurement time (min)

IPv4 probes
IPv6 probes

(c) Non-Siblings

 0

 5e+08

 1e+09

 1.5e+09

 2e+09

 2.5e+09

 3e+09

 3.5e+09

 4e+09

 0 5000 10000 15000 20000 25000 30000

R
aw

 T
im

es
ta

m
p

Measurement Time (msec)

IPv4
IPv6

(d) FreeBSD random offset makes times-
tamps non-monotonic across flows

 0

 5e+08

 1e+09

 1.5e+09

 2e+09

 2.5e+09

 3e+09

 3.5e+09

 4e+09

 4.5e+09

 0 1000 2000 3000 4000 5000 6000

R
aw

 T
im

es
ta

m
p

Measurement Time (min)

IPv4
IPv6

(e) www.caida.org timestamps. IPv4
timestamps are monotonic, but ran-
dom for IPv6 due to a proxy.

-10

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 500 1000 1500 2000 2500 3000 3500 4000

ob
se

rv
ed

 o
ffs

et
 (m

se
c)

measurement time(sec)

IPv4
Inferred IPv4 Skew

IPv6
Interferred IPv6 Skew

(f) Non-siblings: Inferred clock drift to
www.socialsecurity.gov via IPv4
and IPv6

Fig. 2. Examples of insufficient drift angle, necessitating point distance (§3.4) (a-c)
and complicated association inferences (d-f).

3.4 TCP Timestamp Point Distance

In our ground-truth testing of the TCP timestamp skew, we make three general
observations: i) some machines now have clocks with negligible drift (e.g. Fig-
ure 2(a)); ii) some clocks we observe exhibit non-linearity in their skews (e.g.
Figure 2(b)); and iii) the observed skew of two distinct machines, but with the
same OS and located in the same rack, can be very similar (e.g. Figure 2(c)).

These complicating factors, which Kohno did not observe in 2005, motivate
a second test on the TCP timestamps: pair-wise point distance. For each IPv4
packet, with arrival time t4i , we find the IPv6 packet whose arrival time is closest

(either before or after), say it is packet j, with arrival time t6j . We define the
absolute value of difference in skews of these two packets to be the pair-wise
point difference for IPv4 packet i: diff(i) = |s4i − s6j |.

After some experimentation, we find that the median of the diff(i)’s to
be most useful. Figure 2(c) illustrates the merit of the point distance method.
The plotted IPv4 and IPv6 skews are from two different, but identical, physical
machines in the same data center. The timestamp drifts appear very similar and
yield θ = 0.358 degrees, which is less than the τ threshold. Thus, with the skew
inference alone, these two addresses would erroneously be inferred to be siblings.
However, the point distance correctly rejects them: the median difference is above
a chosen threshold of 100 msec.

3.5 Full Algorithm

Algorithm 1 presents pseudocode for the logic to infer whether I4 and I6 are
siblings. First, we probe I4 and I6 over time to obtain the TCP option signatures
Signature4,6 and vectors of skew measurements s

4,6. The first condition (line
3) is to test whether the option signatures differ (§3.2), in which case we infer
that the addresses are non-siblings and terminate.

We observe that the options returned by various TCP stacks can be divided
into five cases: 1) no options returned; 2) timestamp not present in options;
3) timestamps non-monotonic between connections; 4) timestamps are random;
5) timestamps are monotonic. Lines (4-8) tests for these cases. Non-monotonic
timestamps can occur when I4 or I6 are addresses of a front-end load balancer
and the clocks of the machines behind the load balancing are not precisely syn-
chronized. In this case, the timestamps of a single flow are monotonic, but can
be non-monotonic across connections. In addition, we also observe TCP stacks
where the timestamp always starts at 1 for each connection.

Next are random timestamps. Some TCPs, notably BSD-based [16], random-
ize the initial TCP timestamp values on a per-flow basis. As shown in Figure 2(d),
the timestamps increase linearly from some random offset for each connection
and are not monotonic across flows. When one addresses presents randomized
values and the other does not, we infer a non-sibling relationship.

Algorithm 1 Siblings(I4, I6)

1: (s4, Signature4) ⇐ probe(I4)
2: (s6, Signature6) ⇐ probe(I6)
3: if Signature4 6= Signature6 then return false

4: for case in ‘missing’, ‘non-mono’, ‘rand’ do
5: if case(s4) = True and case(s6) = True then
6: return unknown
7: if case(s4) = True or case(s6) = True then
8: return false
9: (α4, α6) = slopes(s4, s6)
10: θ = angle(α4, α6)
11: if θ < τ then return true
12: else return false

These cases present both a difficulty and an opportunity. When the times-
tamps from both the IPv4 and IPv6 address are non-monotonic, missing, or
random, we cannot infer a definitive relation and classify their association as
“unknown.” However, if one protocol matches one of the cases and the other
protocol does not, we conclude that the addresses are not related.

As a real-world example, consider the raw timestamps from the IPv4 and
IPv6 addresses of www.caida.org in Figure 2(e). While the IPv4 timestamps
increase monotonically with a constant skew, the IPv6 timestamps are random.
In addition, the TCP option signatures were different. Correspondence with the
system administrators revealed that the IPv6 address was a separate machine
that acted as a proxy for the IPv4 web server.

Note that application layer fingerprints, for instance the HTTP headers in our
experiment, are not a reliable sibling detection mechanism. Figure 2(f) presents
one example in our dataset to highlight our use of granular fingerprints. We
probe the site and receive identical HTTP headers via either IPv4 or IPv6 in
response. However, the drift-based inference clearly shows these as non-siblings.

Lastly, we perform the skew-based inference (§3.3), lines 9 - 12. When testing
Alg. 1 against ground truth, we find corner cases where either the algorithm
could not make a determination, or was incorrect. With some experimentation,
we determine some additional, simple logic that improved the results. However,
this logic relies on some rather arbitrary parameter values. We include it here as
an optional enhancement, Alg. 2. We believe that further refinement is possible.

Algorithm 2 Optional, enhancement to Algorithm 1

10: median ⇐ point distances diff(i)’s
11: range ⇐ max minus min of observed skews
12: if range < 100 then return unknown

13: if (|α4| ≤ 0.0001) or (|α6| ≤ 0.0001) then
14: if median ≤ range/10 then return true
15: else return false
16: if median > 100 then return false

17: return to Algorithm 1 at step 10.

The core reason the drift inference works is that, in the common-case, the
remote server’s TCP timestamp clock is less accurate than the prober host’s
packet capture clock. However, in contrast to prior work, we find that for a
subset of the machines we probe, the TCP timestamps are set by a clock that
is as stable as that of the probing machine, such that the only source of skew
comes from probing latency variation (e.g. Figure 2(a)). As an alternative, we
compute the median of the point distances (§3.4) in line 10 of Alg. 2, and the
dynamic range of the skews, defined as: the largest skew observed over time, for
either IPv4 or IPv6, minus the smallest skew, line 11. (In the plots of skew, the
range is the largest y-coordinate minus the smallest.) If the dynamic range is
below a threshold, we cannot obtain a reliable skew fingerprint, as in Figure 2(a),

and classify the relationship as unknown, line 12. Similarly, if either the IPv4 or
IPv6 slope (α4 or α6) is below a threshold minslope = 0.0001, we consider the
skew-based inference unreliable, line 13. In this case, if the median point distance
is an order of magnitude less than the dynamic range we associate the IPs (lines
14-15). Last, if the median point distance is >100 ms, we infer non-siblings.

A limitation of our technique is that we require the ability to negotiate a TCP
connection with the remote device, i.e. the remote machine must be listening on
a publicly accessible TCP port. As applied to common server infrastructure, e.g.
remote web or DNS servers, this does not present a practical limitation.

4 Results

This section analyzes results from deploying the aforementioned technique on
our datasets, including ground-truth and the larger IPv4 and IPv6 Internet.

4.1 Ground Truth Validation

To validate the accuracy of our technique, we examine the ground truth dataset
described in §3.1. We perform multiple rounds of testing. While the data provides
us with true associations, for evaluation purposes, we also test false associations
in each round. These known non-siblings are formed by randomly associating a
non-associated IPv6 site with each IPv4 site. In this fashion, we test both type
I and type II errors.

Table 2. Relative Ground Truth Performance of Sibling Classifiers
Algorithm Accuracy Precision Recall Specificity Unknown

TCP Opts 82.2% 74.1% 98.2% 66.8% 0.0%

Kohno 90.6% 82.3% 97.0% 86.4% 27.8%

Alg 1 94.2% 93.6% 91.4% 96.0% 22.4%

Alg 1&2 97.4% 99.6% 93.1% 99.8% 29.4%

We wish to understand discriminative power of both the original Kohno
timestamp skew algorithm, as well as our enhancements, in distinguishing sib-
lings from non-siblings. First, we look at using TCP options as a classifier alone.
As shown in Table 2, TCP options yield an accuracy of 82.2% with 74.1% preci-
sion, 98% recall, and 67% specificity. (Where precision is the fraction of identified
siblings that are truly siblings, recall is the fraction of all ground-truth siblings
classified as siblings, and specificity measures the ability to identify non-siblings).
Thus, while the option signature alone does not provide sufficient granularity, it
eliminates non-siblings with minimal overhead (just a single TCP ACK packet
from the IPv4 and IPv6 target).

We next examine Kohno’s original timestamp skew algorithm alone, without
consideration of TCP options. Over ten rounds, we obtain an accuracy of 90.6%
with 82.3% precision, 97.0% recall and 86.4% specificity. We then examine Al-
gorithm 1 and the combined Algorithms 1 and 2 as detailed in §3.5. We see that

Table 3. Alexa Machine-Sibling Inferences
Dataset(Table 1)

Inference non-CDN CDN Embedded

Siblings

- v4/v6 drift match 816 (53.2%) 55 (23.9%) 978 (93.1%)

Non-Siblings

- v4 and v6 opt sig differ 229 (14.9%) 14 (6.1%) 22 (2.1%)

- v4 or v6 missing 70 (4.6%) 11 (4.8%) 7 (0.7%)

- v4 or v6 random 23 (1.5%) 13 (5.7%) 1 (0.1%)

- v4 or v6 non-monotonic 52 (3.4%) 47 (20.4%) 1 (0.1%)

- v4/v6 drift mismatch 35 (2.3%) 13 (5.7%) 0 (0.0%)

Unknown

- v4 and v6 missing 196 (12.8%) 6 (2.6%) 26 (2.5%)

- v4 and v6 random 32 (2.1%) 25 (10.9%) 6 (0.6%)

- v4 and v6 non-monotonic 78 (5.1%) 45 (19.6%) 9 (0.9%)

- v4 or v6 unresponsive 2 (0.1%) 1 (0.4%) 0 (0.0%)

Total 1533 (100%) 230 (100%) 1050 (100%)

each provides increasingly accurate sibling classification, with the full algorithm
yielding an accuracy of 97.4%, with 99.6% precision, 93.1% recall, and 99.8%
specificity over the ten rounds of testing. However, some of this accuracy comes
at the expense of our full algorithm labeling 29.4% of the hosts as “unknown”
as it cannot make a definitive determination.

4.2 Web Server Machine Siblings

As an initial application of our sibling detection technique, we characterize sib-
ling relationships among a subset of important Internet infrastructure, Alexa [1]
top 100,000 websites as gathered, resolved, and probed in April, 2014 (details of
dataset in §3.1). We perform our probing from a host with high-speed, native
IPv6 connectivity. To remain inconspicuous, we probe at a low rate. We fetch
the root HTML page from each site’s IPv4 and IPv6 interfaces once every ∼3.5
hours over ∼17 days.

We then apply our inference Algorithm 1 and 2 to the datasets in Table 1. As
described in §3, there are a variety of potential outcomes. For each of the three
Alexa datasets, we divide the inferences into three major categories in Table 3:
siblings, non-siblings, and unknown.

In aggregate, we find 53.2% of the IPv4/IPv6 addresses of non-CDN, 23.9%
of CDN, and 93.1% of embedded are siblings via the full Algorithm 1 and 2.
Fully 42.6% of the CDN, and 26.7% of the non-CDN have addresses we infer to
be non-siblings. While we expect a high proportion of siblings among sites with
embedded addresses, 3.0% are non-sibling–underscoring the fact that addresses
alone do not imply the same machine. And we cannot definitively determine 20%
of the non-CDN, 33.5% of the CDN, and 3.9% of the embedded sites.

The largest contributing subset of non-monotonic timestamps are CDN sites
– as we might expect due to the various forms of load balancing inherent in
CDN architectures. A non-trivial fraction of non-CDN and CDN sites have miss-

ing timestamps. We learned via personal communication with an operator that
missing timestamps in one case were due to a front-end load balancing device;
similar middlebox issues [4] likely cause the missing timestamps observed here.

Among the sibling and non-sibling populations, we examine the origin AS of
the prefixes to which the addresses belong from the routeviews [12] BGP table.
The origin AS of the corresponding IPv4 and IPv6 addresses of a website allow
us to determine whether non-siblings are within the same network, if not the
same host. As shown in Table 4, 21.8% of the non-siblings in our non-CDN
dataset are in different ASes, as compared to 10% of the siblings. Siblings may
be in different ASes when an organization uses IPv6 tunnels or a different AS for
IPv6. By contrast, 97.3% of the inferred siblings among the embedded sites are
within the same AS. Only 51% of the non-siblings among the CDN sites reside
within the same AS. Manual investigation of some of the siblings in different
ASes reveals that the ASes belong to the same organization.

Table 4. Alexa Machine-Sibling AS Agreement
Fraction of matching (I4, I6) ASNs

Inference non-CDN CDN Embedded

Siblings 90.0% 83.6% 97.3%

Non-Siblings 78.2% 51.0% 87.1%

Unknown 91.6% 62.3% 78.0%

5 Conclusions and Future Work

We developed, validated, and applied a method for using TCP-layer fingerprint-
ing techniques to identify IPv4 and IPv6 addresses that belong to the same
machine. By combining coarse and fine-grained TCP-layer fingerprinting, we
identify server “siblings.” We can imagine several other applications of sibling
interface identification: predicting correlated failures or similar behaviors under
attack (and whether the IPv4 and IPv6 interfaces share fate); IPv6 geolocation
that leverages knowledge of the corresponding IPv4 address; and comparing IPv4
and IPv6 path performance, by providing certainty as to whether a measurement
end-point is common; and more generally, understanding how IPv6 and IPv4 net-
work infrastructures are co-evolving at a macroscopic level. Although we applied
our technique to web servers, it generalizes to any device with a listening TCP
service, including DNS, email, and peer-to-peer services.

Although our technique validated surprisingly well for our diverse set of
ground truth, we see at least three areas for improvement. First, the optional
enhancement algorithm (Alg. 2) we used to classify problematic cases contains
parameters and thresholds that may overfit our data. A larger ground-truth
dataset would support further refinement and higher confidence in our infer-
ences. Second, although we detect certain instances of TCP load-balancing by
observing multiple monotonic sequences with different initial offsets, it would
be better to use reverse-proxy detection techniques to discern cases where a
TCP-splitting proxy sits in front of the interrogated web server.

Last, our preliminary sensitivity results show that our inferences are stable
even with fewer data points and over shorter time frames. Our technique can
make some sibling inferences quickly, with only a few TCP observations, whereas
others require samples across longer time periods. We leave a complete temporal
sensitivity analysis to future work.

Acknowledgments

Thanks to kc claffy, Justin Rohrer, Nick Weaver, and Geoffrey Xie for invaluable
feedback. This work supported by in part by NSF grant CNS-1111445 and De-
partment of Homeland Security (DHS) S&T contract N66001-2250-58231. Views
and conclusions are those of the authors and should not be interpreted as repre-
senting the official policies, either expressed or implied, of the U.S. government.

References

1. Alexa: Top 1,000,000 sites (2014), http://www.alexa.com/topsites
2. Berger, A., Weaver, N., Beverly, R., Campbell, L.: Internet Nameserver IPv4 and

IPv6 Address Relationships. In: Proceedings of the ACM Internet Measurement
Conference. pp. 91–104 (2013)

3. claffy, k.: Tracking IPv6 evolution: data we have and data we need. SIGCOMM
Comput. Commun. Rev. 41(3), 43–48 (Jul 2011)

4. Craven, R., Beverly, R., Allman, M.: A Middlebox-cooperative TCP for a Non
End-to-end Internet. In: Proceedings of ACM SIGCOMM. pp. 151–162 (2014)

5. Czyz, J., Allman, M., Zhang, J., Iekel-Johnson, S., Osterweil, E., Bailey, M.: Mea-
suring IPv6 Adoption. In: Proceedings of ACM SIGCOMM. pp. 87–98 (2014)

6. Dhamdhere, A., Luckie, M., Huffaker, B., Elmokashfi, A., Aben, E., et al.: Measur-
ing the deployment of IPv6: topology, routing and performance. In: Proceedings
of the ACM Internet Measurement Conference. pp. 537–550 (2012)

7. Heuse, M.: Recent advances in IPv6 insecurities. In: Chaos Communications
Congress (2010)

8. Jacobson, V., Braden, R., Borman, D.: TCP Extensions for High Performance.
RFC 1323 (May 1992)

9. Kohno, T., Broido, A., Claffy, K.C.: Remote physical device fingerprinting. In:
Proceedings of IEEE Security and Privacy. pp. 211–225 (2005)

10. Lyon, G.F.: Nmap Network Scanning: The Official Nmap Project Guide to Network
Discovery and Security Scanning (2009)

11. Maxmind: IP Geolocation (2014), http://www.maxmind.com
12. Meyer, D.: University of Oregon RouteViews (2014), http://www.routeviews.org
13. Moon, S., Skelly, P., Towsley, D.: Estimation and removal of clock skew from

network delay measurements. In: Proceedings of INFOCOM. vol. 1 (mar 1999)
14. RIPE NCC: World IPv6 Day Measurements (2011), http://v6day.ripe.net
15. Sarrar, N., Maier, G., Ager, B., Sommer, R., Uhlig, S.: Investigating IPv6 traffic:

what happened at the world IPv6 day? In: Proceedings of PAM (2012)
16. Silbersack, M.J.: Improving TCP/IP security through randomization without sac-

rificing interoperability. In: Proceedings of BSDCan (2006)
17. Zander, S., Andrew, L.L., Armitage, G., Huston, G., Michaelson, G.: Mitigating

Sampling Error when Measuring Internet Client IPv6 Capabilities. In: Proceedings
of the ACM Internet Measurement Conference. pp. 87–100 (2012)

