Exploiting Transport-Level Characteristics of Spam

Robert Beverly¹ Karen Sollins

MIT Computer Science and Artificial Intelligence Laboratory ¹now at BBN Technologies {rbeverly,sollins}@csail.mit.edu August 21, 2008

Conference on Email and Anti-Spam 2008

Outline

- 2 Experimental Methodology
- 3 Learning and Prediction
- 4 Open Questions

The Spam Arms Race

Attackers, scammers and thieves quickly adapt to defenses. Most effective solutions exploit *fundamental* weaknesses of attackers

Current Best Practices:

- Content Filtering ... response: modify word tokens
- Reputation Analysis ... response: dynamic, fresh addresses
- Collaborative Filtering ... response: mail uniqueness
- And the cycle continues: Authentication Schemes, computational puzzles, etc.

The Spam Arms Race

Attackers, scammers and thieves quickly adapt to defenses. Most effective solutions exploit *fundamental* weaknesses of attackers

Current Best Practices:

- Content Filtering ... response: modify word tokens
- Reputation Analysis ... response: dynamic, fresh addresses
- Collaborative Filtering ... response: mail uniqueness
- And the cycle continues: Authentication Schemes, computational puzzles, etc.

The Spam Arms Race

We propose a different approach:

- No panacea; existing solutions all have weaknesses
- Our solution, "SpamFlow," is distinct from current practice

Question:

Are traffic characteristics a fundamental weakness of spam?

Hypothetical Question

Specifically:

- What is the transport (TCP/IP packet stream) character of spam?
- Are there differences between spam and ham flows?
- How to exploit differences in a way which spammers cannot easily evade?

Why ask this question?

- E

Hypothetical Question

Specifically:

- What is the transport (TCP/IP packet stream) character of spam?
- Are there differences between spam and ham flows?
- How to exploit differences in a way which spammers cannot easily evade?

Why ask this question?

Background The C

The Character of Spam

Transport-Level Characteristics of Spam

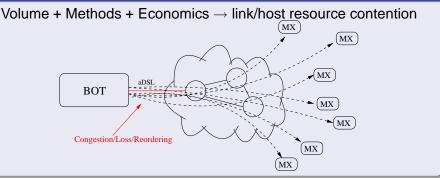
Two Observations

Low Penetration:

- due to existing filters, user ambivalence
- \rightarrow huge volumes of spam

Sending Methods:

- Open mail relays, email trojans, botnets, dialup
- $\bullet \ \rightarrow$ Low asymmetric bandwidth, widely distributed

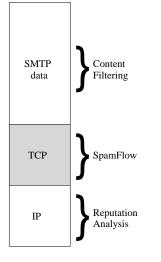


3 + 4 = +

Background The Character of Spam

Transport-Level Characteristics of Spam

Combining Observations: Low Penetration + Sending Methods


Contention:

Contention manifests as TCP/IP loss, retransmission, reordering, etc.

CSAIL

Background

Understanding SpamFlow

- Not looking at IP header
- Not looking at data
- SpamFlow: TCP stream, incl timing
- (look at combining methods later)

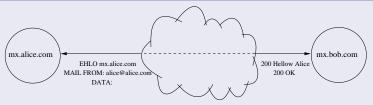
3 > 4 3

Outline

- 2 Experimental Methodology
- 3 Learning and Prediction
- 4 Open Questions

A Brief Diversion on TCP/IP

Transmission Control Protocol (TCP):


- Reliable, bi-directional, in-order byte transmission abstraction
 - Acknowledgments
 - State Machine
- Flow and congestion control
 - Reacts to loss, persistent congestion
- Multi-flow fairness and efficient resource utilization (AIMD)
 - Round trip time (RTT) estimation
 - Bandwidth probing

3 + 4 = +

SMTP and TCP

- Simple Mail Transport Protocol (SMTP) uses TCP for transport
- Sequence of SMTP handshaking between Mail Transport Agents (MTAs)
- Mail contents are packetized

How do Spam Connections Behave?

R. Beverly, K. Sollins (MIT)

THE

Outline

- 2 Experimental Methodology
- 3 Learning and Prediction
- 4 Open Questions

イロト イポト イヨト イヨト

Background

Building intuition

How do Spam Connections Behave?

RcvQ	SndQ	Local	Foreign Addr	State
0	0	srv:25	92.47.129.89:49014	SYN_RECV
0	0	srv:25	ppp83-237-106-114.:29081	SYN_RECV
0	0	srv:25	88.200.227.123:25068	SYN_RECV
0	0	srv:25	92.47.129.89:49014	SYN_RECV
0	0	srv:25	ppp83-237-106-114.:29084	SYN_RECV
0	0	srv:25	88.200.227.123:25068	SYN_RECV
0	0	srv:25	88.200.227.123:25069	SYN_RECV
0	0	srv:25	88.200.227.123:25070	SYN_RECV
0	0	srv:25	88.200.227.123:25074	SYN_RECV
0	0	srv:25	84.255.150.15:4232	SYN_RECV
0	25	srv:25	222.123.147.41:50282	LAST_ACK
0	28	srv:25	adsl-pool-222.123.:1720	LAST_ACK
0	31	srv:25	222.123.147.41:50152	LAST_ACK
0	15	srv:25	222.123.147.41:50889	LAST_ACK
0	9	srv:25	88.245.3.19:venus	LAST_ACK
0	25	srv:25	78.184.155.70:1854	FIN_WAIT1
0	23	srv:25	190-48-30-225.spe:50920	FIN_WAIT1
0	23	srv:25	dsl.dynamic812132:48154	FIN_WAIT1
0	23	srv:25	ip-85-160-91-16.e:48093	FIN_WAIT1
0	23	srv:25	88.234.141.158:48389	FIN_WAIT1
0	23	srv:25	p5B0FBB5D.dip.t-d:11965	FIN_WAIT1

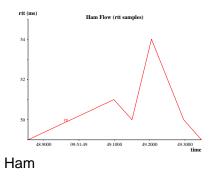
★ E ► ★ E ►

Background

Building intuition

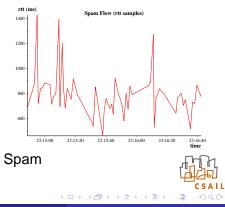
How do Spam Connections Behave?

RcvQ	SndQ	Local	Foreign Addr State 92.47.129.89:49014 SYN_RECV ppp83-237-106-114 SVN_RECV 88.200.2 TCP Stuck in States 92.47.12 State
0	0	srv:25	
0	0	srv:25	ppp83-23' 88.200.2:• Stays in these states for minutes
0	0	srv:25	
0	0	srv:25	
0	0	srv:25	
0	0	srv:25	88.200.2 Half-open connections 222.123.1 •
0	0	srv:25	
0	25	srv:25	
0 0 0	28 31 15 9	srv:25 srv:25 srv:25 srv:25	 ads1-pool 222.123.1 222.123.1 "disappear" mid-connection
0 0 0	9 25 23 23 23	srv:25 srv:25 srv:25 srv:25 srv:25	 Belats.1 PRemote MTAs that send Belats.1 Belats.1 FIN and disappear
0 0 	23 23	srv:25 srv:25	p50510 88.234.14. p5B0FBB5D.dip.t-d:11965 FIN_WAIT1

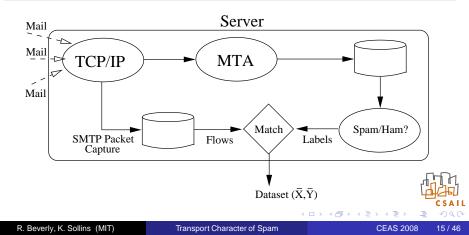

イロト イポト イヨト イヨト

SALL

What about RTT? ...building more intuition


Received: from vms044pub.verizon.net From: "Dr. Beverly, MD" <b@ex.com> Subject: thoughts Dear Robert,

I hope you have had a great week!


Received: from unknown (59.9.86.75) From: Erich Shoemaker <ried@ex.com> Subject: Replica for you A T4g Heuer w4tch is a luxury statement on its own.

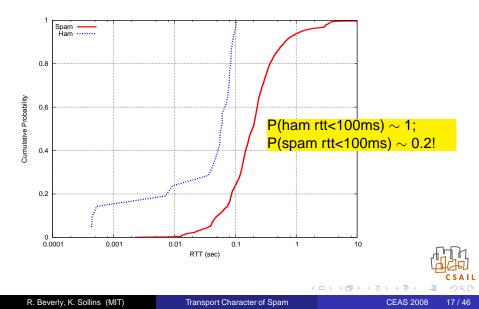
In Prestlge Replicas, any T4g Heuer...

Data Collection

- Instrument a Mail Transport Agent (MTA) server
- Collect SMTP packet trace
- Match labeled emails to packet flows

Outline

Experimental Methodology


- 3 Learning and Prediction
- 4 Open Questions

R. Beverly, K. Sollins (MIT)

Using a flow property

Round Trip Time

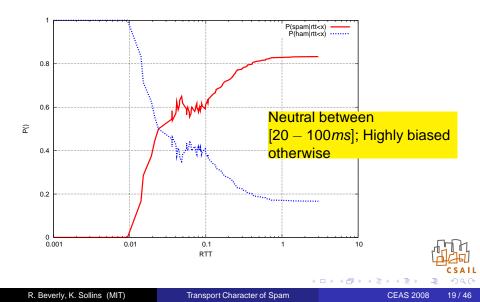
Using a flow property

Round Trip Time

Bayes' Rule

Use causal information to form diagnosis

$$P(spam|rtt > x) = \frac{P(rtt > x|spam)P(spam)}{P(rtt > x)}$$


(1)

R. Beverly, K. Sollins (MIT)

(4) (3) (4) (4) (4)

A .

Round Trip Time

Selecting Features

Wait! You're disenfranchising distant servers!

- Yes; may be a good thing
- $\simeq 5\% > 1s$
- More importantly...

Other Transport "Features:"

- Packets, Retransmits, OutOfOrder, RSTs, FINs
- Zero Window, Minimum Cong. Window, Max Idle, Jitter, etc.
- Adaptable per-user, per-network

Key Insight

Statistical flow properties can provide differentiation

R. Beverly, K. Sollins (MIT)

CSALL

Selecting Features

Wait! You're disenfranchising distant servers!

- Yes; may be a good thing
- $\simeq 5\% > 1s$
- More importantly...

Other Transport "Features:"

- Packets, Retransmits, OutOfOrder, RSTs, FINs
- Zero Window, Minimum Cong. Window, Max Idle, Jitter, etc.
- Adaptable per-user, per-network

Key Insight

Statistical flow properties can provide differentiation

R. Beverly, K. Sollins (MIT)

Transport Character of Spam

CEAS 2008 20 / 46

CSALL

Outline

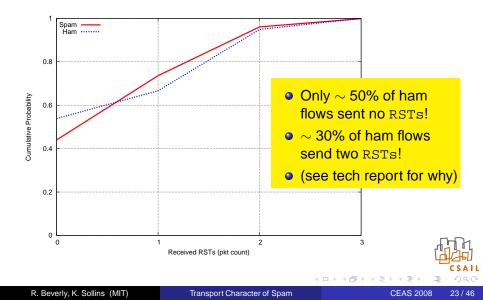
Experimental Methodology

- 3 Learning and Prediction
- 4 Open Questions

Non-Features

Non-Features

- Many intuitively "good" features turn out not to be
- Strength of statistical approach


One Example in Detail:

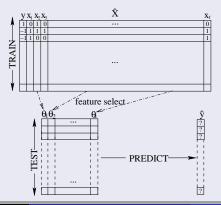
- RSTs as abortive close on socket
- A good indication of misbehaving flows?

3 > 4 3

Non-Features Example: Received RSTS

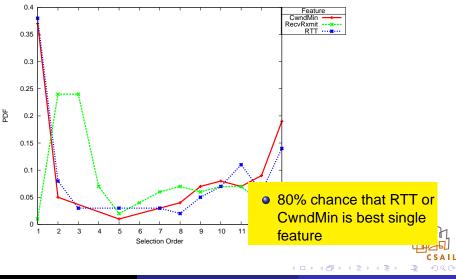
Outline

Experimental Methodology


- 3 Learning and Prediction
- 4 Open Questions

Picking Features

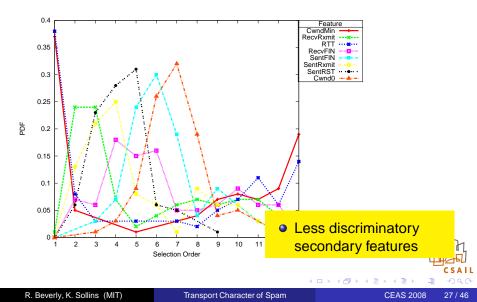
So, which features provide discrimination?


- Feature selection
- Simple method is forward fitting
- Greedily choose one available feature to minimize training error

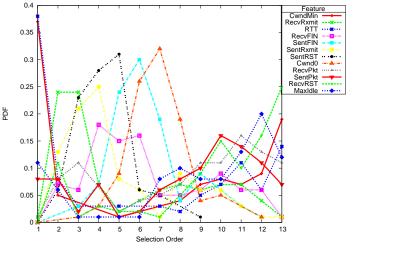
R. Beverly, K. Sollins (MIT)

Feature Selection

Picking Features



R. Beverly, K. Sollins (MIT)


Transport Character of Spam

CEAS 2008 26 / 46

Features cont'd

Features cont'd

-2

CSAIL

Outline

- 2 Experimental Methodology
- 3 Learning and Prediction
 - 4 Open Questions

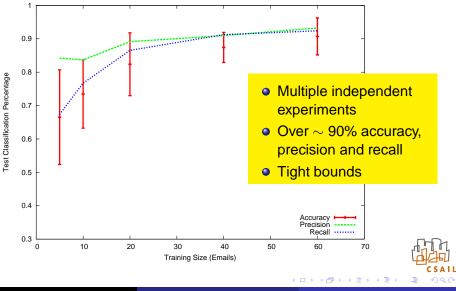
SpamFlow

Based on observations, build a model

- Supervised learning, binary classification
- E.g. Bayes Nets, Support Vector Machines, etc.

SpamFlow

• A working implementation of the ideas using SVMs


Evaluation

- FP = ham marked as spam
- FN = spam marked as ham
- accuracy = $\frac{TP+TN}{P+N}$
- precision = $\frac{TP}{TP+FP}$

イロト イポト イヨト イヨト

CSALL

Prediction Performance

R. Beverly, K. Sollins (MIT)

Transport Character of Spam

CEAS 2008 31 / 46

Learning and Prediction

SpamFlow

SpamAssassin False Negatives

False Negatives

- Against our data set, SpamAssassin gives 127 false negatives
- SpamFlow detects 78% of those
- $\bullet \rightarrow$ useful to combine methods!

For example...

ヨト・モート

SpamAssassin False Negatives

Received: (gmail 12851 invoked from network); 24 Jan 2008 05:14:58 -0000 Received: from 201-213-46-215.net.prima.net.ar (201.213.46.215:8963) by ralph.rbeverly.net with SMTF; 24 Jan 2008 05:14:58 -0000 Received: from unknown (HELO deviant) (192.168.0.5) by mail6.colossal.com with SMTF; Thu, 24 Jan 2008 00:14:58 -0500 Date: Thu, 24 Jan 2008 00:14:58 -0500 To: rbeverly@grdata.com, rcmsjm@grdata.com, reb3@grdata.com, roots.nojunk@grdata.com, russell_s From: "Jordan Abrams" <inclusionVito@familyhistree.com> Subject: Canadian Pharmcy Online! - 70-80% OFF! Content-Length: 76 Lines: 6

Re" Your Pharmacy order # 85493899

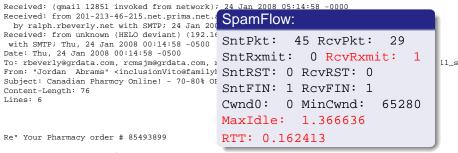
Pls Go ' www.protectfair ' dot com

SpamFlow

SpamAssassin False Negatives

Received: (qmail 12851 invoked from network) Received: from 201-213-46-215.net.prima.net.		
by ralph.rbeverly.net with SMTP; 24 Jan 20(Received: from unknown (HELO deviant) (192.16 with SMTP; Thu, 24 Jan 2008 00:14:58 -0500 Date: Thu, 24 Jan 2008 00:14:58 -0500 To: rbeverly@grdata.com, rcmsjm@grdata.com, n From: "Jordan Abrams' <inclusionvito@familyl Subject: Canadian Pharmcy Online! - 70-80% OF Content-Length: 76 Lines: 6</inclusionvito@familyl 	X-Spam-Status: No, score=3.5 required=5.0 tests=BAYES_50, ES_OPEU_DEMCY	11_s
Re" Your Pharmacy order # 85493899	autolearn=no version=3.2.3	

CSALL


Pls Go

' www.protectfair '

dot com

(4) (3) (4) (4) (4)

SpamAssassin False Negatives

Pls Go ' www.protectfair ' dot com

Open Questions

Spam is an Arms Race:

- How would spammers react?
- Adapt by slowing down, sending less mail
- Could spammers tweak TCP stacks and circumvent?

Future Work:

- Gather additional data sets
- Package, distribute
- Explore method's potential in other domains

- Attacking spam at a different layer
- Correct predictions with over 90% accuracy, precision and recall without content or reputation analysis
- SpamFlow finds 78% of SpamAssassin false-negatives
- No implementation hurdle, easily combined with existing techniques

Summary

R. Beverly, K. Sollins (MIT)

Transport Character of Spam

CEAS 2008 39 / 46

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶

SpamFlow FAQ

- Can SpamFlow be more conservative in using RTT: Yes, even a highly conservative filter can still leverage RTT to eliminate extremely large RTT spam flows.
- Doesn't SpamFlow privilege well-connected senders? Personal, home or small business servers do not have the same volume requirement as spammers and thus are unlikely to induce the same TCP congestion effects we observe. SpamFlow only discriminates against sources that are *both* poorly connected *and* injecting large volumes of mail.
- What about email lists? In contrast to spam, which must be sent continually, email list traffic can be scheduled in order to not cause local congestion.

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Support Vector Machines

Dual-Form, Constrained Optimization:

$$\sum_{t=1}^{n} \alpha_t - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j \mathbf{K}(\phi(\mathbf{x}_i), \phi(\mathbf{x}_j)) \text{ s.t. } \mathbf{C} \ge \alpha_t \ge 0, \sum_{t=1}^{n} \alpha_t \mathbf{y}_t = 0 \quad (2)$$

- Separate training set into two classes in most general way
- Main insight: find hyper-plane separator that maximizes the minimum margin between convex hulls of classes
- Second insight: if data is not linearly separable, take to higher dimension
- **Result**: generalizes well, fast, accommodate unknown data structure

CSALL

What's going on here? Example: Received RSTS

Google sends SMTP QUIT, then active close, then RSTs passive close

```
11:55:57.807504 googl > srv: P 187089:187095(6) ack 143 win 5720
11:55:57.807510 googl > srv: F 187095:187095(0) ack 143 win 5720
11:55:57.807628 srv > googl: . ack 187096 win 32614
11:55:57.807863 srv > googl: P 143:167(24) ack 187096 win 32614
11:55:57.804759 gooql > srv: R 46149836:46149836:0) win 0
```

Yahoo! sends SMTP QUIT, srv performs active close. Yahoo! then sends three RSTs when srv goes to TIME_WAIT

```
11:20:35.023406 srv > yahoo: P 113:137(24) ack 1426 win 32120
11:20:35.023782 srv > yahoo: F 137:137(0) ack 1426 win 32120
11:20:35.023983 yahoo > srv: F 1426:1426(0) ack 113 win 33304
11:20:35.076591 yahoo > srv: R 776208340:776208340(0) win 0
11:20:35.076969 yahoo > srv: R 776208340:776208340(0) win 0
11:20:35.077381 yahoo > srv: R 776208340:776208340(0) win 0
```

Abortive close in Postfix source; normal behavior

R. Beverly, K. Sollins (MIT)

(日)

LSAIL

What's going on here? Example: Received RSTS

Is abortive close a common "normal" SMTP technique?

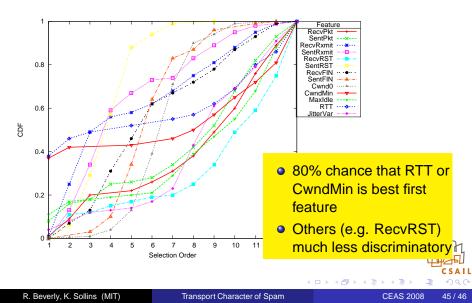
Postfix Source

```
static void start_connect(SESSION *session) {
    int fd;
    struct linger linger;
    linger.l_onoff = 1;
    linger.l_linger = 0;
    if (setsockopt(fd, SOL_SOCKET, SO_LINGER, (char *) &linger,
        sizeof(linger)) < 0)
    ...</pre>
```


R. Beverly, K. Sollins (MIT)

・ロト ・ 四ト ・ ヨト ・ ヨト

ROC Curve



R. Beverly, K. Sollins (MIT)

Transport Character of Spam

CEAS 2008 44 / 46

Features

Data Collection

Dataset:

- One week, January 2008
- \sim 18k emails, only \sim 200 legitimate ham
- Normalize spam and ham count for each experiment, randomly select spams
- Dataset is small; future work corrects this

This talk: method, intuition, validation

