
The Spoofer Project: Inferring the Extent of Source Address Filtering on the
Internet

Robert Beverly
MIT CSAIL

rbeverly@mit.edu

Steven Bauer
MIT CSAIL

bauer@mit.edu

Abstract

Forging, or ”spoofing,” the source addresses of IP pack-
ets provides malicious parties with anonymity and novel
attack vectors. Spoofing-based attacks complicate net-
work operator’s defense techniques; tracing spoofing re-
mains a difficult and largely manual process. More so-
phisticated next generation distributed denial of service
(DDoS) attacks may test filtering policies and adaptively
attempt to forge source addresses. To understand the
current state of network filtering, this paper presents
an Internet-wide active measurement spoofing project.
Clients in our study attempt to send carefully crafted
UDP packets designed to infer filtering policies. When
filtering of valid packets is in place we determine the fil-
tering granularity by performing adjacent netblock scan-
ning. Our results are the first to quantify the extent and
nature of filtering and the ability to spoof on the Internet.
We find that approximately one-quarter of the observed
addresses, netblocks and autonomous systems (AS) per-
mit full or partial spoofing. Projecting this number to the
entire Internet, an approximation we show is reasonable,
yields over 360 million addresses and 4,600 ASes from
which spoofing is possible. Our findings suggest that a
large portion of the Internet is vulnerable to spoofing and
concerted attacks employing spoofing remain a serious
concern.

1 Introduction

The Internet architecture provides no explicit mechanism
to prevent packets with forged headers from traversing
the network. Malicious parties can leverage the abil-
ity to forge or ”spoof” the source address of IP pack-
ets to mount various attacks. For example, the vulner-
ability of BGP routers to predictive, spoofed TCP re-
sets was a major concern in the last year [5]. By spoof-
ing the source address, an attacker or compromised host
can send packets toward a victim anonymously. This

anonymity greatly complicates the job of network oper-
ators trying to defend their networks. More insidiously,
attackers with the ability to spoof can leverage reflec-
tors [15], making distributed denial-of-service (DDoS)
attacks particularly problematic.

Previous research investigates various means of miti-
gating spoofing. Jin et. al give a scheme to block spoofed
packets based on hop count [11]. Bellovin proposes a
probabilistic marking scheme to trace spoofed packets to
their origin [2], while Snoeren suggests an efficient hash-
based traceback mechanism [17]. Despite these research
efforts, finding the source of spoofed packets remains an
operationally difficult problem for network operators [7].

Techniques such as ingress and egress address filter-
ing [6] and unicast reverse path forwarding checks [1] are
employed in some production networks to prevent spoof-
ing. However, current filtering practices are limited by
multi-homing, route asymmetry, filter list maintenance
and router design. Thus, filtering is generally practical
only at the edge of the network and is not universally
applied.

Is spoofing still a relevant issue? The rise of zom-
bie farms, where spoofing provides little additional
anonymity for an attacker, suggests spoofing may not
be a useful technique. The proliferation of Network
Address Translation (NAT) devices renders spoofing at-
tacks from hosts behind the NAT useless as the IP header
is rewritten. Despite these two factors, analysis of
backscatter [13, 14] shows spoofing is still widespread.

Moreover, the difficulty in defending against spoofed
attacks suggests that next generation attack farms may
intelligently probe the network and adaptively change
behavior based on the ability to spoof. Consider a 10,000
node zombie DDoS attack [3]. Assuming a worst case
scenario where zombies are widely distributed, a net-
work operator must defend against attack packets from
5% of the routeable netblocks. However, if 2500 of those
zombies are attached to networks permitting spoofing, a
significant volume of the traffic would appear to come

from any of the routeable netblocks. Not only would the
attack be difficult to track and filter, spoofing complicates
mitigation of the remaining non-spoofed traffic.

This paper presents an Internet-wide active measure-
ment spoofing project. Clients distributed around the
world attempt to test various filtering policies by sending
a series of spoofed UDP packets. In contrast to backscat-
ter analysis which observes only the result of spoofing
and is oblivious to the identity of the true sources, our
research is concerned with finding the portions of the
network that allow spoofing. Our results are the first to
quantify the extent and nature of source address filtering
and the ability to spoof on the Internet. Our key findings
are:

1. Approximately 24% of the observed netblocks, cor-
responding to 25% of the observed autonomous sys-
tems, allow spoofing.

2. Filtering is frequently applied inconsistently allow-
ing for partial spoofing of portions of the IP address
space.

3. No geographic region in our sample appears to be a
predominate potential source of spoofed packets.

4. In over 36% of our cases, filtering policies are ap-
plied exactly on the routing boundaries observed in
a global BGP routing table.

2 Methodology

All major operating systems require administrative priv-
ileges to send arbitrarily crafted packets as there are few
legitimate reasons for spoofing. There is no way to co-
erce remote Internet hosts, to which we have no access,
to send spoofed packets. Our testing therefore requires
the cooperation of willing participants. We make pub-
licly available a “spoofer” program, in source and bi-
nary formats. This program allows users to test their
own network and records the results on our server. The
software as well as continually updated summary statis-
tics are provided on the Spoofer Project home page:
http://spoofer.csail.mit.edu.

While our coverage is limited by the number of hosts
which run the spoofer, we receive test reports from a non-
trivial portion of the Internet. Section 3 examines cover-
age in detail.

2.1 Spoofer Operation

As depicted in Figure 1, in a spoofing test the client
attempts to send a series of spoofed UDP packets to a
server on our campus (step 1). As our server receives the
packets, they are recorded in a database for later retrieval

Server

4. Correlate Test Results

Spoofer

3. Test Summary over TCP

DB

2. Insert Spoofed Packet

1. Spoofed UDP Packets

Clients

Figure 1: Spoofer test operation. Clients source a se-
ries of spoofed UDP packets to our server where they are
subsequently disambiguated and analyzed.

Table 1: Source addresses of spoofed packets

Spoofed Source Description

1.2.3.4 Unallocated
172.16.1.100 Private (RFC1918)

6.1.2.3 Valid (In BGP table)
IP ⊕ (2N) for 0 ≤ N ≤ 24 Neighbor Spoof

(step 2). Because UDP does not guarantee reliable deliv-
ery, the tester sends five packets for each source address
with a random inter-packet delay between (0, 500]ms to
prevent incorrect inferences due to loss.

After sending the spoofed UDP packets, the program
establishes a TCP connection with the server to exchange
test results and complete the client’s test run (step 3). To
avoid any secondary filtering effects that might drop test
or report packets for reasons other than source address
filtering, we use a UDP destination port of 53 for the
spoofed packets and TCP port 80 for the test summary
exchange. These ports correspond to the well-known
DNS and HTTP ports respectively and should be open
in the majority of circumstances1.

The source addresses, summarized in Table 1, are spe-
cially chosen to test and infer common filtering policies.
The first source address tested is as yet unallocated by
the Internet Assigned Number Authority (IANA) [10, 8].
This address should not appear in any routing tables since
IANA has not delegated it to any organization. Some net-
works employ filters that block traffic originating from
these unallocated regions of the IP address space.

The second source IP address the program tests is one
in a private netblock designated by RFC1918 [16]. Pri-
vate IP addresses are often legitimately assigned to hosts
in a private network for site-local routing, but should
never appear on the public Internet. Best common prac-
tices dictate that privately addressed packets should be
contained within AS boundaries.

Next, the spoofer sends packets with a valid, allocated

source address but one that is spoofed. In contrast to the
first series of packets, this address appears in the global
BGP routing table but is allocated to another organiza-
tion. Notably, a filtering policy that allows only packets
with source IP addresses that are present in the BGP table
is easier for providers to implement and maintain.

Finally, the spoofer attempts to discover the granular-
ity of any applied filtering by successively spoofing ad-
dresses from netblocks adjacent to its own. We accom-
plish this “neighbor spoof” by trying successively larger
boundaries until spoofing an adjacent /8. To generate the
address, we negate (i.e. flip) a bit at a time in the host’s
true source address beginning with the least significant
bit. Thus, we start by spoofing an adjacent /31 address
which corresponds to the host’s address ±1, i.e. the im-
mediate neighbor’s address.

For each source address, the spoofer includes a unique
random 14 byte identifier string in the payload of the
UDP datagram. The unique string allows us to later dis-
ambiguate which spoofed packets are received and which
are blocked.

During the TCP connection, the client informs the
server of its operating system and the number of spoofed
sources it sent. For each source, the client reports
the identifiers of the spoofed packets it attempted to
send. Based on this transaction, the server records in
the database the success or failure of the remote ma-
chine’s ability to send spoofed packets (step 4). Finally,
the spoofer runs a traceroute to our server which is also
recorded in the database to determine the complete for-
ward path of any spoofs.

At the end of the report transaction, the user is pro-
vided a unique URL pointing to a web page containing
her test results. This web page summarizes the spoofing
and filtering along the path from the user to our host.

2.2 Spoofer Run

For each client running the spoofer, several outcomes
are possible. The spoofed UDP packets simply may not
reach our server if a network filter or other policy blocks
them. During the test summary transaction phase (step
3) of the spoofer, the server determines which packets
the client believes it sent actually did not arrive.

In some cases the operating system may not allow
sending spoofed packets even when running with admin-
istrative privileges. The most common instance of this
restriction is Windows XP with Service Pack 2 (SP2)2,
however we see other operating systems with security re-
strictions that cause the client to fail. Alternatively, the
packets may arrive with the true source address instead of
the spoofed address if a NAT device rewrites the header.

Finally, some or all of the spoofed packets may arrive.
In this case, the server will correlate the message iden-

tifiers the client reports with the identifiers of the UDP
packets it received. In all cases, the server records the
outcome in the database for later analysis.

3 Results

We advertised availability of the spoofer application
on the North American Network Operators Group
(NANOG) and dshield security mailing lists. Between
March and May 2005, we received 570 client reports,
459 of which were unique 3. All of our results exclude
any data from machines belonging to our own campus
netblocks and we count multiple reports from the same
client IP addresses only once.

While the general user population may not be inter-
ested or motivated to run our spoofing test application,
filtering policies are applied to netblocks and hence con-
sistent over the size of that netblock. Because network
routing advertisements are aggregated, the granularity of
our netblock view may not exactly reflect filtering poli-
cies. Whether the netblocks coincide with globally ad-
vertised routing prefixes is a question we consider in Sec-
tion 3.4. Therefore, for the purposes of coverage, it suf-
fices if a single user is able to test a netblock. Unless
there is direct evidence of the ability to spoof we classify
netblocks as “believed unspoofable.”

3.1 Failed Spoofs

In this subsection, we consider only the three types of
spoofed addresses described in the methodology (unal-
located, private and valid) and ignore neighbor spoofing
for the time being. As previously discussed, all spoofing
for a given client may fail for a variety of reasons. We
do not infer anything about the netblocks of clients with
these failures:

• Socket creation blocked by Windows XP SP2: 122
of the 216 reports from Windows (56%) indicate
that the spoofer application was unable to create
the raw socket and send spoofed packets. The only
version of Windows which blocks packets with a
spoofed source address is Windows XP running Ser-
vice Pack 2 (SP2). That over half of the Windows
machines are blocked implies that SP2 is widely
adopted in our client population. Because of the
dominant popularity of Windows as a client oper-
ating system [4], continued uptake of SP2 will have
a significant positive impact on preventing spoofing
from compromised hosts.

• Socket creation blocked by other operating systems:
An additional 20 clients not running Windows were
unable to send spoofed packets even when running

Table 2: Observed spoofing coverage

Metric Spoofable Believed Unspoofable

Netblocks 73 229
IP Addresses 21.0M 70.0M
ASes 52 150

Table 3: Spoofing coverage relative to observed and
routeable space

Metric Spoofable Spoofable
(% Observed) (% Routeable Space)

Netblocks 24.2% 0.04%
IP Addresses 23.0% 1.31%
ASes 25.7% 0.29%

with root privileges. These machines likely em-
ploy additional security mechanisms such as capa-
bilities or had local packet firewalls that block the
raw socket creation or sendto system calls.

• Hosts behind NAT devices: When the UDP packets
arrive at our server but with a source address other
than the source address they are sent with, the server
marks them as rewritten by a NAT. We count all
instances of NAT rewriting as a failed spoof since
we cannot infer whether or not the host would have
been successful had the NAT not been in place. 110
of the clients are behind a NAT device.

• Totals: 284 clients, or approximately two-thirds,
failed to spoof any packets.

3.2 Spoofing Coverage

We quantify the coverage of spoofing along several di-
mensions. Using RouteViews [12] data, we determine
the netblock and AS of each spoofer client. Based on the
size of the netblock, we can determine the number of IP
addresses the report approximately represents. Table 2
gives the number of netblocks, addresses and ASes that
are spoofable and believed unspoofable as observed in
our data set.

At the time of writing, there are approximately 1.59B
globally routeable IP address, 18,000 autonomous sys-
tems and 169,000 netblocks. Table 3 presents the spoof-
ing coverage relative to the addresses, ASes and net-
blocks we observed and the total global counts.

Approximately 24% of the observed netblocks, corre-
sponding to 25% of the observed autonomous systems,

Table 4: Frequency of inconsistent filtering. Check
marks indicate the presence of a particular filter.

Private Unallocated Valid Instances

X X X 229
X X 21
X X 0
X 52

X X 0
X 0

X 0

allow some form of spoofing. Assuming a uniform dis-
tribution of testing, projecting these numbers to the entire
Internet yields over 360M spoofable addresses and over
4,600 spoofable ASes. Our findings suggest that a large
portion of the Internet is still vulnerable to spoofing, im-
plying that concerted spoofing attacks remain a serious
concern.

3.3 Inconsistent Filtering

Many hosts experience inconsistent filtering where a sub-
set of the spoofed packets arrive at our measurement sta-
tion. We classify the different subsets of spoofing into
these inconsistent filtering categories. Again, for the mo-
ment we ignore adjacent netblock spoofing. Table 4 sum-
marizes the inconsistent filtering behavior we observe. A
check mark in the table indicates the presence of a par-
ticular type of filtering, whereas no check mark indicates
the absence of filtering.

• Failed on private address (RFC1918), other spoofs
successful: 52 clients are able to spoof both valid
and unallocated addresses, but are unable to spoof
private addresses. Since blocking private addresses
is an easy and time-invariant policy, it is unsurpris-
ing to find instances of only RFC1918 (“martian”)
blocking.

• Failed on private and unallocated addresses, valid
(routeable) spoof successful: 21 clients could not
spoof the RFC1918 or the unallocated (“bogon”)
addresses, but could spoof the valid address. This
interesting class of inconsistency likely arises from
policy that checks for a valid routing entry before
forwarding packets. An advantage to providers
in adopting this policy is that there is no need to
continually and manually update packet filters as
new addresses are allocated. An example of a
community-wide project to provide a BGP feed of
bogon routes to automate filtering is the Cymru bo-
gon route-server project [18].

• Failed on unallocated addresses, other spoofs suc-
cessful: We saw no inconsistencies of this type, im-
plying that providers who are conscientious enough
to block unallocated addresses also block RFC1918
packets.

3.4 Understanding Filtering Granularity

Next we turn to the problem of understanding filtering
granularity. To determine the filtering granularity, we an-
alyze the data from the adjacent netblock neighbor scan.
Recall that the client attempts to spoof successive net-
blocks adjacent to its own, beginning with its immediate
neighbor (i.e. a /31) and ending by testing an adjacent /8.

Figure 2 displays the granularity of either ingress or
egress filtering employed by service providers tested in
our study. If the filtering occurs on a /8 boundary for
instance, a client within that network is able to spoof
16,777,215 other addresses. In our study nearly 40% of
clients are able to spoof addresses upto a /8 netblock.

� � � � � � � � � � � � � � � � � 	 � �

� �� � �� � �� � �� � �� � �� � �� � �� � �	 � �

� �� � �� � �� � �� � �� � �� � �� � �� � �	 � �

� ��

�

��

� �

���

���

� ���

� �
���
�� �
��

��� �"!$#%�'&)(*,+.-/&)02143 -/5�0262()5.-/& *87

Figure 2: Probability distribution of filtering policy gran-
ularity as inferred by neighbor spoof scanning

We are also interested in how closely a host’s inferred
filtering boundaries match the size of its prefix in the
global BGP routing table. This is important because our
ability to infer the scope of spoofing is limited if filter-
ing is applied at a very granular level, but routing an-
nouncements are highly aggregated. More generally un-
derstanding the correspondence between policy enforce-
ment points and routing advertisements as seen from the
global routing tables is useful knowledge in that infer-
ences can be made about a provider’s network structure
and operational practices.

We define a “prefix distance” metric as the differ-
ence between the size of the advertised BGP prefix to
which the client belongs and the maximum-sized adja-
cent neighbor netblock the client successfully spoofs. In
cases where the client is able to spoof our other three test

source addresses, the client is able to also spoof all pos-
sible neighbors. We ignore clients that are capable of full
spoofing when analyzing filtering boundary effects.

Figure 3(a) plots the cumulative distribution of clients
as a function of prefix distance. Figure 3(b) examines the
difference between the advertised and inferred address
counts. Over 36% of the clients infer the same filtering
prefix boundary as the actual route advertisement.

A final curious class of inconsistencies for which we
have no good intuition is due to hosts that are able to
spoof one of our sources, but are unable to spoof their
immediate neighbor’s address. In total we found two in-
stances of non-neighbor spoofability. Although there are
several possible explanations for this phenomenon, it is
unexpected.

3.5 Visualizing the Extent of Spoofing

When our measurement host receives a spoofed packet
from a client, we can definitively say that no device along
the path from the client to our server performed any fil-
tering to block the packet. To visualize the scope, bound-
ary and geographic extent of spoofing, we use CAIDA’s
Otter tool [9]. The coordinate space places nodes with a
radius corresponding to their AS path length depth from
our measurement host and a degree representing geo-
graphic location of the AS. The images plot our mea-
surement host in the center of the graph at depth zero
labeled as “MIT(AS3).” For each client, we determine
the AS path from the client to our measurement host and
add each AS as a node in the graph. ASes are connected
by edges according to the client’s route toward the mea-
surement host. The degree of each node is determined by
the longitude of the organization responsible for the AS.
In this fashion, we can visualize the geographic position
of ASes as well as their BGP distance from the server.

Figure 4(a) contains all ASes of nodes from which we
received test reports as well as the intermediate ASes on
the path to our measurement host. We see several dis-
tinct clusters of nodes corresponding to Europe, Asia and
North America. Figure 4(b) plots the ASes and paths
corresponding to clients that successfully sent spoofed
packets. The ASes are in the same coordinate system
so that we can compare the two graphs and determine
the boundary and range of spoofing as observed from
our host. Comparing the two plots, no geographic area
emerges with significantly differing relative ability to
spoof. While the second graph is more sparse, a sig-
nificant portion of the graph is spoofable. In general if
filtering is not applied by the providers at the “edges,”
spoofed packets travel unabated across the Internet. Any
filtering that is in place on the three major peering ses-
sions our campus maintains had no effect in preventing
spoofed packets from reaching our server.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12 14 16 18 20 22

C
um

ul
at

iv
e

F
ra

ct
io

n
of

 C
lie

nt
s

Prefix Distance

(a) Cumulative distribution of difference between advertised
and inferred prefix size.

 0

 0.2

 0.4

 0.6

 0.8

 1

0 2^2 2^4 2^6 2^8 2^10 2^12 2^14

C
um

ul
at

iv
e

F
ra

ct
io

n
of

 C
lie

nt
s

Netblock Address Count Difference

(b) Cumulative distribution of difference between advertised
and inferred netblock address counts.

Figure 3: Correspondence between filtering granularity as inferred by neighbor spoof scanning and BGP advertised
prefixes in a global routing table.

(a) AS graph of all attempted spoof paths (b) AS graph of spoofable paths

Figure 4: Visualizing geographic reach of spoofing. Each node represents an AS while edges show routing paths. The
AS radius is determined by distance from our measurement host, degree by AS longitude. The graph of spoofable
paths is a subset of all paths tested. Our server is in the center of the graph at depth zero.

4 Conclusions

To the best of our knowledge, this paper presents the first
Internet-wide results examining the extent and nature of
source address filtering. Our findings are germane to
both network research and operational communities. We
see that a significant fraction, approximately one-quarter,
of the netblocks, IP addresses and ASes observed permit
spoofing. This suggests that a large portion of the Inter-
net is still vulnerable to spoofing and concerted spoof-
ing attacks remain a serious concern. Projecting our re-
sults to the entire Internet yields over 360M spoofable
addresses and 4,600 ASes from which spoofing is possi-
ble. This is particularly significant if next generation at-
tack farms intelligently probe the network and adaptively
change behavior based on the ability to spoof.

Currently, we are working on adding functionality to
the spoofer that detects what point filtering is applied. In
addition, we plan to test spoofing in the reverse direction;
the ability to send spoofed packets to random Internet
hosts. Combined with continued collection of spoofing
reports4, we hope this project serves as a significant step
forward in understanding Internet filtering.

Acknowledgments

The authors would like to thank Mike Afergan, John
Curran, Simson Garfinkel, Aaron Hughes, Ken Shores,
Karen Sollins, John Wroclawski and countless NANOG
members for constructive discussions and feedback. We
also thank the maintainers of the RouteViews project for
continuing to provide a valuable community resource.

References

[1] BAKER, F., AND SAVOLA, P. Ingress Filtering for Multihomed
Networks. RFC 3704, Mar. 2004.

[2] BELLOVIN, S. M. ICMP traceback messages. IETF Inter-
net Draft, Sept. 2000. http://www.cs.columbia.edu/
˜smb/papers/draft-bellovin-itrace-00.txt.

[3] BERINAT, S. Online extortion: How a bookmaker and a whiz kid
took on an extortionist and won. CSO Magazine (May 2005).

[4] BEVERLY, R. A Robust Classifier for Passive TCP/IP Finger-
printing. In Proceedings of the 5th Passive and Active Measure-
ment (PAM) Workshop (2004), pp. 158–167.

[5] DALAL, M. Improving TCP’s robustness to blind
in-window attacks. IETF Internet Draft, May 2005.
http://www.ietf.org/internet-drafts/
draft-ietf-tcpm-tcpsecure-03.txt.

[6] FERGUSON, P., AND SENIE, D. Network Ingress Filtering: De-
feating Denial of Service Attacks which employ IP Source Ad-
dress Spoofing. RFC 2827, May 2000.

[7] GREENE, B. R., MORROW, C., AND GEMBERLING, B. W. ISP
security: Real world techniques. NANOG 23, Oct. 2001. http:
//www.nanog.org/mtg-0110/greene.html.

[8] HUBBARD, K., KOSTERS, M., CONRAD, D., KARRENBERG,
D., AND POSTEL, J. Internet Registry IP Allocation Guidelines.
RFC 2050, Nov. 1996.

[9] HUFFAKER, B., NEMETH, E., AND K. CLAFFY. Otter: A
general-purpose network visualization tool. In Proceedings of
INET (June 1999), pp. 22–25.

[10] IANA. Internet Assigned Number Authority IP address alloca-
tions. http://www.iana.org.

[11] JIN, C., WANG, H., AND SHIN, K. Hop-count filtering: An ef-
fective defense against spoofed DoS traffic. In Proceedings of the
10th ACM International Conference on Computer and Communi-
cations Security (CCS) (2003), pp. 30–41.

[12] MEYER, D. University of Oregon RouteViews. http://www.
routeviews.org.

[13] MOORE, D., VOELKER, G. M., AND SAVAGE, S. Inferring in-
ternet Denial-of-Service activity. In USENIX Security Symposium
(2001), pp. 9–22.

[14] PANG, R., YEGNESWARAN, V., BARFORD, P., AND PAXSON,
V. Characteristics of Internet Background Radiation. In Proceed-
ings of ACM SIGCOMM/USENIX Internet Measurement Confer-
ence (Oct. 2004).

[15] PAXSON, V. An analysis of using reflectors for distributed
denial-of-service attacks. ACM Computer Communications Re-
view (CCR) 31, 3 (2001).

[16] REKHTER, Y., MOSKOWITZ, B., KARRENBERG, D.,
DE GROOT, G. J., AND LEAR, E. Address Allocation for
Private Internets. RFC 1918, Feb. 1996.

[17] SNOEREN, A. C., PARTRIDGE, C., SANCHEQ, L. A., JONES,
C. E., TCHAKOUNTIO, F., KENT, S. T., AND STRAYER, W. T.
Hash-based IP traceback. In Proceedings of ACM SIGCOMM
(2001).

[18] THOMAS, R. Team cymru bogon route-server project. http:
//www.cymru.com/.

Notes
1If these well-known, well-used ports fail or are proxied, attempts

to spoof almost assuredly fail as well under most reasonable network
configurations.

2http://www.microsoft.com/technet/
prodtechnol/winxppro/maintain/sp2netwk.mspx

3Notably no users or network administrators reported any abuse as
a result of running our spoofer.

4We continue to receive ∼10 reports per day and plan to exploit
distributed testbeds for additional coverage.

