The State of the Email Address

Mike Afergan Rob Beverly January 27, 2005

Emailtester - Outline

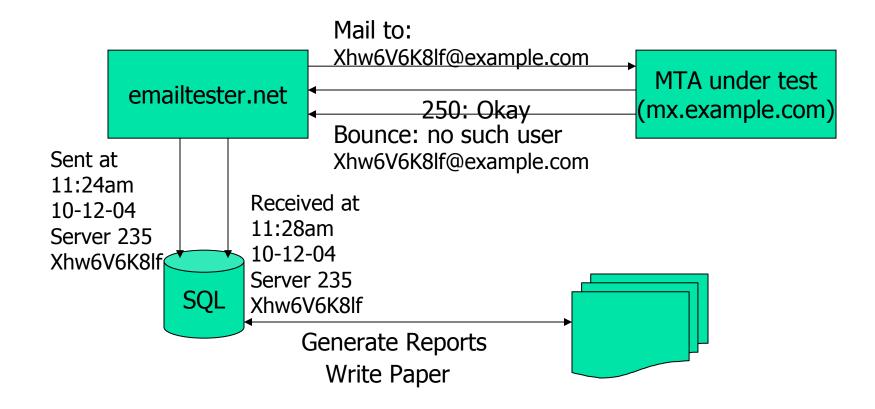
- Motivation/Goals/Background
- Methodology
- Results
- Questions

Motivation/Goals/Background

Motivation

- Electronic Mail is a widely-used, very important (\$\$) component of the Internet architecture
- But:
 - Simple Mail Transfer Protocol (SMTP) has been the standard protocol for over 20 years
 - In recent years, architecture has been strained by normal and unsolicited (i.e. spam) load
- General perception of Email: it "just works"
- Despite maturity and importance, surprisingly little data to substantiate this claim

Project Goals


- To a large set of representative Internet SMTP servers, measure:
 - Loss
 - Latency
 - Paths
- Without administrative or user access to the servers
- Understand the results

Methodology

Testing Methodology

- Active measurement over several weeks
- Developed an email "traceroute" that relies on SMTP bounce-backs
- Traditionally servers inform users of errors: unknown user, undeliverable message, etc.

Methodology – High Level

Testing Methodology

- Send emails addressed to unique, invalid recipients at each domain
- Record message ID (recipient), server ID and timestamp in database
- When and if the message bounces, disambiguate the message based on its message ID
- Record latency, statistics

SMTP Bounce-backs

- Due to spam, only ~25% of the domains we survey respond with bounce-backs
- Despite the low return rate, our domain selection provides the most representative cross-section of SMTP servers possible
- How did we select domains?

Domains

- Want large and diverse set of representative SMTP servers (large heterogeneity on Internet)
- Many Mail Transfer Agents (MTAs) in the wild:
 - qmail
 - exchange
 - postfix, etc...
- Each MTA may be uniquely configured
- Different servers may have vastly different:
 - Load (legitimate and spam)
 - Internet connectivity

Domains

- Fortune 500:
 - Domains corresponding to Fortune 500 list
 - Likely more robust and fault-tolerant systems
- Topbits:
 - Most popular servers from an ISP web cache
- Random:
 - Pick a random 32-bit number
 - Use BGP table to determine if IP address is routable
 - Perform inverse DNS lookup on IP address
 - Positive DNS responses are truncated to the TLD

DNS and MX Records

- Need to remove non-determinism due to DNS caching and load-balancing
- Mail Exchanger (MX) records:
 - Map domain names to a set of mail servers
 - Each MX record has a preference value
 - If the most preferred server is unavailable, the remaining servers are tried in order of preference
 - More than one server may have the same preference value in order to load-balance

DNS and A Records

- Address (A) records:
 - Each server named in an MX record has one or more A records
 - May be a single IP or multiple addresses, again for load balancing or multi-homed hosts

Pre-processing Step

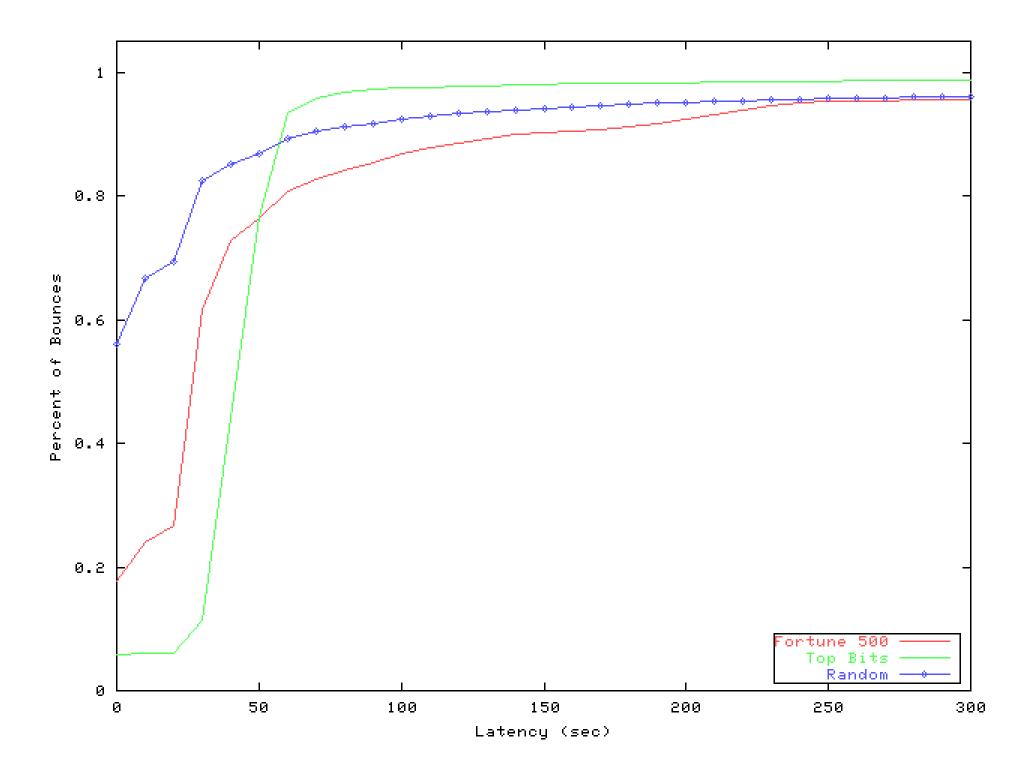
- To remove non-determinism, each domain is resolved into the full set of MX servers
- Each MX record is further resolved into the set of corresponding IP addresses
- The atomic unit of testing is the IP address of a server supporting a domain
- Categorize all servers into:
 - Primary: most preferred
 - Secondary: all others

Domains

Category	Domains	Primary Servers	Total Servers
Fortune 500	282	486	735
Random	216	309	436
TopBits	73	212	297

Methodology – More Details

- Important: Send emails to servers (not domains)!
- Randomize server order before each run
- Email body the same for every message:
 - Designed to be innocuous and pass through any spam filters
 - Provides information on the study and an opt-out link
 - Six domains opted out over the course of the study
 - Implies that some administrators monitor sources of invalid email closely!


Results

- Overview
- Latency
- Loss
- Errors (not today)

Testing

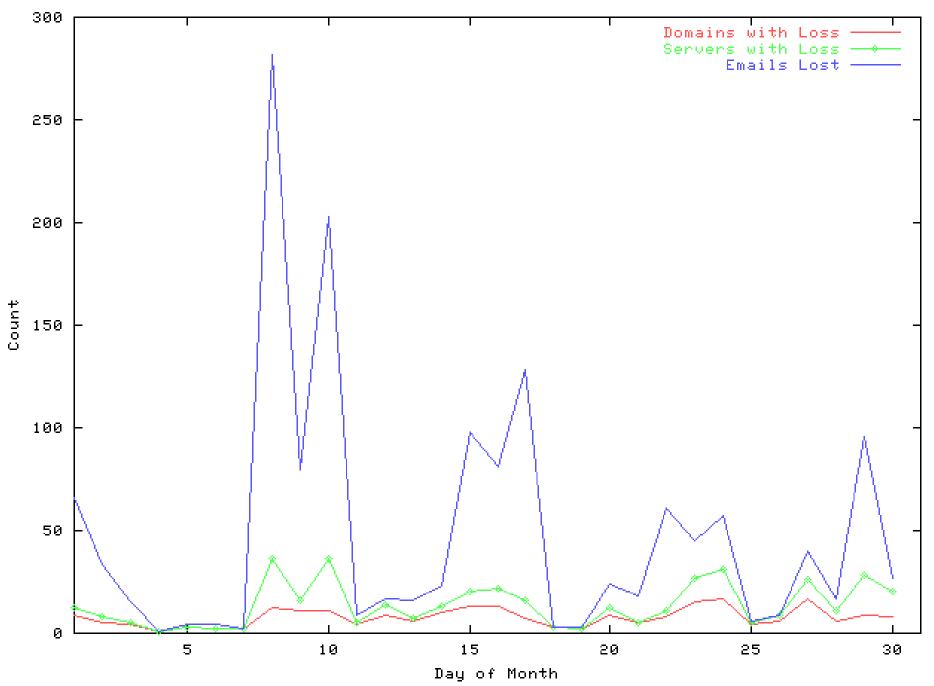
- Send to every server every 15 minutes
- 2880 15 minute "rounds" in Sept.
- Expected: uninteresting results (no loss, low latency)
- Unexpectedly we found:
 - Non-trivial loss rates
 - Bursty loss
 - Latencies longer than days
 - Non-deterministic server behavior

Most of our analysis and conversations were designed to explain away these strange observations. We failed.

Pathological Latency Data

- 295 (0.035%) of bounces arrived more than 24 hours later
- One bounce came 30 days later!
- Examine the latency via the headers
 - No smoking guns
 - Clear evidence of delay within corporate and ISP email infrastructure

Loss Summary (Overall)


-

		Category Name	Success Rate %	Overall (%)	
Expected		Always Respond	100	38	Bigger than Expected
	-	Rare Loss	≥ 99.9 & < 100	6	
		Slight Loss	≥ 95.0 & < 99.9	12	
Explainable		Moderate Loss	> 0.01 & < 95.0	6	Fascinating
		Persistent Loss	> 0 & ≤ 0.01	4	
Expected	 	Never Respond	0	34	

Possible Explanations

- Explanation #1: Bounces may not be representative of normal email behavior
 - Servers might implement different queues for bounces
 - Different policy under different load conditions
- Explanation #2: The IPs we see are virtual
- Can't find any evidence of this:
 - Loss not correlated with peak traffic hours
 - Greeting banners different for same IP address, but not correlated with loss

Loss per Day

Loss Summary

Success Rate %	Fortune 500 (%)	TopBits (%)	Random (%)	Overall (%)
100	36	16	53	38
≥ 99.9 & < 100	7	3	5	6
≥ 95.0 & < 99.9	13	26	5	12
> 0.01 & < 95.0	8	0	3	6
> 0 & ≤ 0.01	5	0	2	4
0	31	55	32	34

Observation: Corporate servers perform worse than random servers.

Loss Summary

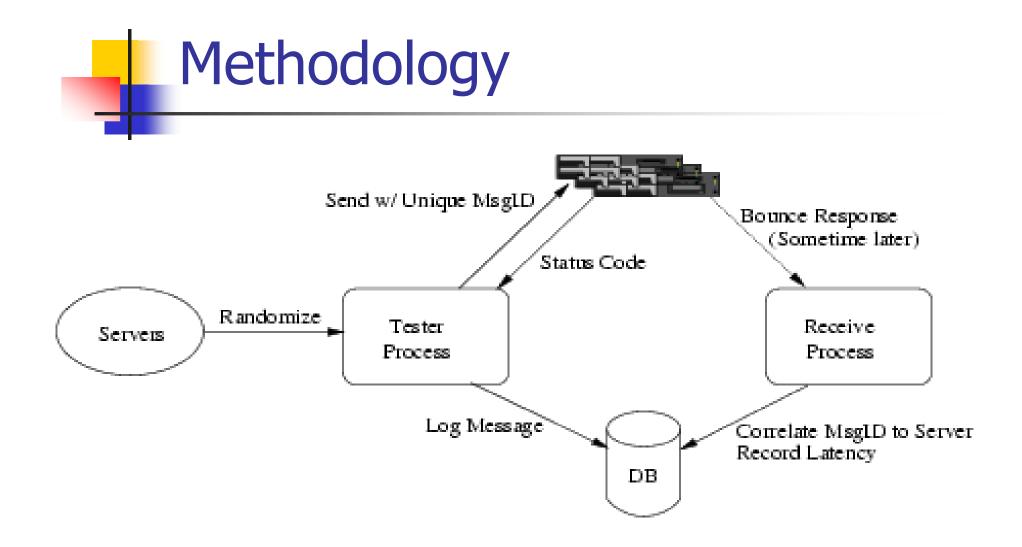
- We observe much more loss than expected
- Most loss comes from bursts of loss, often from the same server and/or domain.
- Clearly demonstrate atypical and/or non-deterministic behavior

Errors

- Our system also records errors
- Errors before sending the email address are irrefutable.
- Interesting results
 - Many primary MXes are unreachable
 - Occasional odd error messages
 - Fortune 500 servers were more wellbehaved

Potential Future Research

- Investigate non-deterministic behavior
- Analyze paths, path stability from SMTP headers
- Consider alternative testing techniques
- Measure loss on Hotmail, GMail, Yahoo, etc.
- Protocols for e2e reliable email/storeand-forward systems


Questions?



MX Record Example

;; ANSWER SECTION:							
yahoo.com.	7200	IN	MX	1 mx2.	mail.yahoo.com.		
yahoo.com.	7200	IN	MX	1 mx3.	mail.yahoo.com.		
yahoo.com.	7200	IN	MX	5 mx4	mail.yahoo.com.		
yahoo.com.	7200	IN	MX	1 mx1.	mail.yahoo.com.		
;; ADDITIONAI	L SECTION	:					
mx1.mail.yaho	1800	IN	A	64.157.4.78			
mx1.mail.yaho	1800	IN	A	67.28.113.10			
mx1.mail.yahoo.com.		1800	IN	A	67.28.113.11		
mx2.mail.yahoo.com.		1800	IN	A	67.28.114.36		
mx2.mail.yahoo.com.		1800	IN	A	64.156.215.8		
mx2.mail.yahoo.com.		1800	IN	A	67.28.114.35		
mx3.mail.yaho	bo.com.	1800	IN	A	64.156.215.5		
mx3.mail.yaho	1800	IN	A	64.156.215.6			
mx3.mail.yaho	DO.COM.	1800	IN	A	64.156.215.7		
mx3.mail.yaho	po.com.	1800	IN	A	64.156.215.18		

• •

