
A Technique for Network Topology Deception

Samuel T. Trassare
Naval Postgraduate School
Email: sttrassa@nps.edu

Robert Beverly
Naval Postgraduate School
Email: rbeverly@nps.edu

David Alderson
Naval Postgraduate School
Email: dlalders@nps.edu

Abstract—Civilian and military networks are continually
probed for vulnerabilities. Cyber criminals, and autonomous
botnets under their control, regularly scan networks in search
of vulnerable systems to co-opt. Military and more sophisticated
adversaries may also scan and map networks as part of re-
connaissance and intelligence gathering. This paper focuses on
adversaries attempting to map a network’s infrastructure, i.e.,
the critical routers and links supporting a network. We develop
a novel methodology, rooted in principles of military deception,
for deceiving a malicious traceroute probe and influencing the
structure of the network as inferred by a mapping adversary.
Our Linux-based implementation runs as a kernel module at
a border router to present a deceptive external topology. We
construct a proof-of-concept test network to show that a remote
adversary using traceroute to map a defended network can be
presented with a false topology of the defender’s choice.

I. INTRODUCTION

Networks are probed thousands of times a day for vulnera-
bilities and points of access [1]. Such scans may originate from
hackers and cyber criminals, or more sophisticated military
adversaries performing reconnaissance and intelligence gath-
ering. This paper focuses on adversaries attempting to map a
network’s infrastructure topology, i.e., the critical routers and
links supporting a network.

The intuitive response to such near-constant probing is
to selectively deny the adversary’s probes from entering the
network. Instead of merely denying the adversary a vantage
into a defended network, we examine the value to be gained
in employing the principle of military deception. Our novel
technique for network topology deception presents an adver-
sary with a false network topology that purposefully conceals
and disguises the underlying true topology. Such deception can
frustrate an adversary’s ability to gain usable intelligence from
a target, and thus prevent exploitation.

Our research focuses on network mapping adversaries
performing active probing. The primary tool employed for
such probing is traceroute [2]. The intelligence gained from
traceroute probing allows an attacker to gain valuable insight
into which nodes in the network would, if disabled by attack,
yield the greatest overall impact (e.g., network disruption, or
other objective). We demonstrate the ability to present the
illusion of any arbitrary topology of the defender’s choice,
ranging from random to false topologies purporting to be much
more resilient than they are in actuality.

We develop a working Linux-based implementation of our
technique as a proof-of-concept. The implementation relies on
the inherent lack of authenticity in responses to traceroute
probes (i.e., ICMP [3]) to provide deception in which the
outward appearance of a network topology is altered. The

topological deception may provide the perception of a network
that resembles, or completely disguises, the underlying true
network by varying attributes such as nodes, node count or
the redundancy and diversity of links between nodes.

For instance, the outward topology presented to an attacker
may be chosen to protect high-value nodes or links within the
network. Thus we may cause the adversary to take specific
actions, such as attacking highly fault-tolerant nodes that
appear weak, or avoiding weak nodes that appear highly
fault-tolerant. The methodology accommodates any true input
topology, while the deceptive topology can be modified easily
and frequently to further confound the adversarys efforts to
identify vulnerabilities in the network infrastructure.

We evaluate our technique on a test network to demon-
strate its efficacy. The execution of our Linux kernel module
implementation is shown to work within a synthetic network
topology with an adversary probing the path to a publicly
available service (a web server) whereby the attacker infers the
deceptive (false) route. Our experiments show that a defender
using our technique can successfully deceive a traceroute
probe, the first in a sequence of steps to mount a credible
deception scheme against an adversary. This initial work
demonstrates the potential of the technique and the utility of
network topology deception.

The remainder of this paper discusses related work (§II),
the design of our topological deception implementation (§III)
and results (§IV). Before concluding we discuss the implica-
tions of our topological deception in defending DoD networks.

II. BACKGROUND

There are at least two methods of employing deception
in cyberspace. The first is through obfuscation, in which
defensive software tools mask identifying attributes of a host
computer to prevent “fingerprinting” [4]. The second method,
the use of honeypots, lures the adversary into exploiting seem-
ingly vulnerable computers which are, in reality, programs
running on a host computer expressly to deceive an adversary
into exposing his or her tactics [5].

Whaley [6] describes deception in two categories: hiding
the real, or dissimulation; and showing the false, or simulation.
Dissimulation is that part of a deception that is concealed
from the adversary. Simulation is the overt part of a deception
presented to the adversary. For example, consider an imple-
mentation of TCP/IP in which the generated traffic contains
artifacts that allow their host OSs to be identified [7]. Smart et
al. [8] describe a scrubber that obfuscates the behavior of the
TCP/IP stack to prevent host operating system identification
(dissimulation).

In simulation research, the work presented by Frederick [9]
explores the state of the art in honeypots by testing the low-
interaction honeypot software on an Internet-facing network
without the protection of a firewall. Honeypots perform by
Whaley’s definition of simulation by providing the illusion of
an existing network resource.

To the best of our knowledge, our work is the first to ex-
plore the notion of network topology obfuscation. The research
presented herein employs both dissimulation and simulation.
Perhaps most closely related to our work is that of recent
“moving target defense” initiatives [10] that attempt to increase
the complexity and cost of an adversary’s attack by shifting
and changing over time.

Yuill et al. describe three discovery processes by which
an adversary gains knowledge of a network. Those processes
are direct observation, investigation, and learning from other
people or agents [11]. Our work attempts to impair the
adversary’s ability to perform direct observation by subverting
the active probing tool, traceroute.

III. METHODOLOGY

Our deception focuses on deceiving an adversary’s trace-
route [2] probe. Traceroute discovers the forward path (se-
quence of router interfaces) of data packets from the vantage
on which it is run to a specified destination. By artificially ma-
nipulating each probe packet’s Time-to-Live (TTL), traceroute
elicits ICMP [3] Time Exceeded messages from routers along
the path. Augustin et al. [12] provide an in-depth treatment
of traceroute and analyze the potential for false topological
inference due to traceroute anomalies. Exploiting traceroute
is the focus of this work. Crucially, the path reported to the
prober is a function of the source IP addresses of these Time
Exceeded messages from the routers.

Our primary observation is that ICMP lacks authenticity
and integrity, thus the source IP address may take on any value.
As a result, there are many possible strategies to implement
deception. In this section, we discuss two deception options,
then describe our real-world Linux implementation.

A. Random Deception

We consider two methods of deceiving a traceroute probe.
In the physical domain, an Electric Warfare (EW) suite has
the capability to either saturate the Radio Frequency (RF)
spectrum in response to an adversary’s radar sweep, or it
may subtly alter the attributes of the adversary’s radar sweep
response so as to disguise the actual distance between the
adversary and target.

Likewise, a deceptive response to a traceroute probe may
be “noise” in the form of ICMP Time Exceeded messages
with randomly generated source IP addresses for each reply
packet1. Such a deception may prove valuable in frustrating
automated traceroute probes as with the method employed by
LaBrea [13]. Or, the deceptive response may be a plausible
and complete path to the target. Both methods were imple-
mented during our experimentation. We used a random number

1Assuming that the original TTL-limited probes are prevented from reaching
actual routers, or that the true ICMP responses are blocked.

generator to generate random source IP addresses, what we
considered to be the “noise.”

Returning random IP addresses to an adversary may be
deterministic on a per-source basis, or may return a random
path even for sequential invocations of traceroute. Clearly, such
random behavior is detectable by sophisticated adversaries.
However, there exists value in simply frustrating mapping
attacks and keeping the adversary in an intelligence gathering
phase [10].

B. Intelligent Deception

A more sophisticated deception results in a “believable”
topology. We consider one particular operational goal: to take
the true network topology as an input such that the resulting
deceptive topology protects critical high-value infrastructure
nodes.

An important consideration was identifying what consti-
tutes a “high-value” node. A high-value node is one whose
exploitation would cause the largest impact to the network.
There are many metrics for evaluating the high-value targets
in a network infrastructure. For this work, we use the well-
established graph theoretic notion of betweenness centrality in
determining a node’s value.

Betweenness centrality (CB) is a node or link measure that
represents how important the node or link is to the connectivity
of the rest of the network. Freeman [14] describes the notion
of point centrality as a structural property of betweenness,
explaining, “a point in a communications network is central
to the extent that it falls on the shortest path between pairs
of other points.” A node with high CB has greater ability to
relay or withhold communication between the pairs of nodes
it connects compared to other nodes on the path between the
same pair. It follows then that, should a node with high CB

be disabled by attack or other action, its inability to relay
communication greatly impacts the pairs of nodes it connects.

As an exemplar of what is possible with our topological de-
ception, we identify the node with the largest CB as the “most
vulnerable node.” We then implement a strategy that presents
a false topology that minimizes the maximum betweenness by
adding a single false edge to the true topology. We explore
the potential for more complex deception in §V, but limit our
initial approach to a single false link2.

We test two algorithms that determine the false link in
deceptive topology. The first greedy algorithm is simple: find
the two nodes in the network with the lowest CB and connect
them. The second approach is to exhaustively enumerate all
possible networks, adding one link between every pair of nodes
in the network, and returning the model of the network with the
lowest maximal CB . While the exhaustive approach is optimal,
it is also inefficient: for n nodes, the algorithm must compute
CB for

(
n
2

)
potential networks. We leave developing a more

efficient algorithm to future research.

The greedy approach produced results that were equal to
that of the exhaustive approach 50% of the time for 100
randomly generated Watts-Strogatz [15] input networks. Each
input network was created with 10 nodes with each node

2This is not an inherent limitation, but was chosen to scope the problem.

True Topology
Analysis Script:

Minimize maximum

centrality
Kernel Module

Linux DeceptionConfig File

Fig. 1: High-level operation of the implementation: the true
topology is analyzed for weaknesses (nodes with high central-
ity) in order to drive the intelligent deception.

Listing 1: Sample kernel configuration file specifying deception
o p t i o n s d e c e p t i v e r o u t e hop addr =
1 9 2 . 1 6 8 . 0 . 2 , 1 9 2 . 1 6 8 . 4 . 2 , 1 9 2 . 1 6 8 . 5 . 2

connected to three nearest neighbors in ring topology with p,
the probability of rewiring each edge, equal to 0.2.

The exhaustive algorithm generated graphs that frequently
showed lower CB than the greedy algorithm. We therefore use
the exhaustive algorithm in our implementation.

We developed a Python script that takes an input file
describing a true network topology. The input file contains
a list of all nodes in a network, each node’s IP address and
each of the links in the network. The script then performs
an exhaustive search of the graph, using the NetworkX [16]
library, testing the resulting overall CB after adding a single
new link between each pair of nodes in the graph. The output
of the script is the input to our deceptive kernel module that
achieves a deception whereby the maximum CB is minimized.
Figure 1 provides a high-level overview of the operation of the
intelligent deception. The resulting configuration file is shown
in Listing 1 where deceptiveroute is the name of the
module and hop_addr is the name of the variable to be
initialized with deceptive IP addresses).

C. Kernel Module Implementation Details

The heart of the deception lies in the implementation of a
Linux kernel module. Table I lists several important variables
that are initialized when the kernel module is loaded. The vari-
able arr_argc contains a count of the number of elements
passed to hop_addr and represents the maximum number of
hops provided in the deceptive route. The configuration file
used as an input to the kernel module (hop_addr) describes
a topology, on a per-destination basis, that lowers the perceived
CB of the most vulnerable node, thus making it a less attractive
target for attack.

The ICMP Time Exceeded replies from the routers are IP
packets, and therefore contain TTL values themselves. The
round-trip time and the TTL of a packet, being loosely corre-
lated, should reinforce the deception. Different TCP/IP stacks
use different initial TTL values when originating packets. The
recommended default TTL value given by IANA [17] is 64.
However, many vendors choose different values such as 32,
128 and 255. The Cisco routers used in our experiment have
a default TTL of 255. The DEFAULT TTL variable in the
reply message may be set to one of these values if there is a
desire to make the deceiving node appear to be a device from
a different vendor.

In order to deceive an external traceroute to the spec-
ified destination (destination_ip) by returning a path

hop addr Initialized from configuration file (e.g., Listing 1)
arr argc Initialized to the number of IP addresses in hop addr
preserve ttl Initialized to zero. Stores incoming packet’s TTL from start

of prerouting hook until end of postrouting hook
DEFAULT TTL Initialized to 65 per RFC 1700 with 1 added to account for

programming logic
router ip 192.168.0.2
destination ip 192.168.5.2

TABLE I: Variables initialized at kernel module load.

dependent on the configuration file, we use the prerouting
and postrouting hooks from the Netfilter [18] packet filtering
package. The prerouting hook can intercept a packet upon
arrival from the network interface card (NIC), before further
kernel processing. Conversely, the postrouting hook can in-
tercept a packet just before it leaves the host computer, after
“normal” kernel processing. Figure 2a provides our prerouting
pseudocode, while Figure 2b provides postroute pseudocode.

In the prerouting hook, the packet is inspected to determine
if it is a traditional UDP-based traceroute3 probe toward the
destination_ip, i.e., UDP destination port 33434-33534
(as defined by IANA).

The deceptive hop that the kernel module chooses to send
in response to the adversary’s traceroute depends on the TTL
value of the incoming packet. Traceroute sends packets with
incrementally increasing TTL to identify every node in the
path to a destination, thus the first packet to arrive at a border
router of a network will always arrive with TTL=1. Therefore,
UDP traceroute probes that arrive at the intelligent router
with TTL=1 are assumed to be the first packet in a set of
traceroute packets. For the first packet, no deception is returned
to the adversary. The intelligent router truthfully replies to
the adversary with an ICMP Time Exceeded message [3].
The kernel module enters its deception logic, but because the
first IP address assigned to hop addr is that of the router,
no deception is actually made. This behavior is based on
the fact that the deception begins after the point of ingress
into a network where we envision the intelligent router being
deployed.

When the second traceroute packet arrives (using UDP and
a destination port range of 33434 to 33534) it has TTL=2. The
reply to this packet is the first to be deceptively returned to
the adversary. From the prerouting hook, the packet’s TTL
is saved in a temporary variable, preserve_ttl, to be
accessed later in the postrouting hook. The packet’s TTL is
then set to zero. Doing so causes the packet to be processed
by the host computer. In effect, the intelligent router is tricked
into processing the packet as if it expired while on its way to
the destination. The host prepares an ICMP Time Exceeded
message to be sent to the traceroute origin (the adversary).

When the Time Exceeded message arrives at the postrout-
ing hook, the source IP of the packet is the intelligent router.
The postrouting hook therefore changes the source address to
the first deceptive hop as defined by the configuration file.

Next, the TTL value of the new packet is decreased to
reflect the metric the adversary expects for a hop that is
more distant than the intelligent router. Here, the temporary

3While traceroute may use other transport protocols, we leave deceiving
these for future work

Data: socket buffer skb
Result: For input packet with TTL>1, set TTL=0

1 ip header = get ip header(skb);
2 if ip header→protocol == UDP then
3 udp header = get udp header(ip header);
4 if (33434 ≥ udp header→dest port ≤ 33434) AND ip header→dest address == webserver ip then
5 if ip header→ttl == 1 then
6 preserve ttl = ip header→ttl;
7 else if ip header→ttl > 1 AND ip header→ttl < arr argc then
8 preserve ttl = ip header→ttl;
9 ip header→ttl = 0;

10 ip header→checksum == new ip checksum(ip header, ip header→length);
11 else if ip header→ttl == arr argc then
12 preserve ttl = ip header→ttl;
13 ip header→dest addr = router ip;
14 ip header→checksum == new ip checksum(ip header, ip header→length);
15 end
16 end
17 end
18 return ACCEPT PACKET;

(a) Identify incoming traceroute probes and conditionally modify the TTL.

Data: socket buffer skb
Result: Transmits a deceptive packet of type Time Exceeded or Port Unreachable

1 ip header = get ip header(skb);
2 if ip header→protocol == ICMP AND ip header→src addr == router ip AND preserve ttl > 0 then
3 icmp header = get icmp header(ip header);
4 if icmp header→type == ICMP TIME EXCEEDED then
5 ip header→src addr = hop addr[preserve ttl-1];
6 else if icmp header→type == ICMP PORT UNREACHABLE then
7 quoted ip header = get quoted ip header(ip header);
8 quoted ip header→dest addr = webserver ip;
9 quoted ip header→checksum = new ip checksum(quoted ip header, quoted ip header→length);

10 end
11 ip header→ttl = DEFAULT TTL - preserve ttl;
12 ip header→checksum == new ip checksum(ip header, ip header→length);
13 delay sending packet(DELAY * preserve ttl);
14 end
15 preserve ttl = 0;
16 return ACCEPT PACKET;

(b) Provide a deceptive Time Exceeded or Port Unreachable message to the adversary.

Fig. 2: Pseudocode for pre- and postroute hooks.

variable, preserve_ttl, and the DEFAULT_TTL value are
used. Recall that the first packet sent in response to the
traceroute scan is without deception and left the intelligent
router with the default TTL=64. The second packet received
at the intelligent router is originated by the adversary with a
TTL one greater than the first packet received. For the second
packet, the adversary expects to reach a machine or router that
is one node more distant than the intelligent router. Thus the
TTL of the reply packet should be one less than the previous
packet. We preserve this behavior in the deception by using
the inbound packet’s TTL whose state is preserved in the
prerouting hook. The TTL of the second outbound packet is
set to DEFAULT_TTL - preserve_ttl. Following this step,
preserve_ttl is set to zero to prepare it for the next packet.

Finally, the packet is delayed by a multiple of the original
packet’s TTL value to account for the additional time it should
take for the packet to reach a hop that, again, is further
away from the adversary than the intelligent router. The total
delay imposed on each packet is 2 ms multiplied by the
inbound packet’s TTL. This deterministic delay is plausible,
but future work will explore drawing from a probabilistic delay
distribution. The functionality in the prerouting and postrouting
hooks process each subsequent traceroute probe for which the
deception requires a Time Exceeded message in reply.

In a typical traceroute, probing terminates when the packet
reaches the destination if the destination replies with an ICMP
Port Unreachable message. Our deception must be capable of

providing deceptive paths of arbitrary length. In the prerouting
hook, when the incoming TTL value matches the maximum
number of hops (the value stored in arr_argc) required by
the deception, the destination address of the packet is replaced
by that of the host machine. In “local processes” the intelligent
router creates the ICMP Port Unreachable message and passes
the packet to the postrouting hook. In the postrouting hook,
the same TTL manipulation is imposed. Lastly, an ICMP Port
Unreachable packet contains as its data payload a portion (28
bytes) of the original packet (the “quotation”) that induced
the ICMP packet [19]. If the adversary’s intended destination
IP is not replaced in this field the deception is exposed. Thus
when sending the ICMP Port Unreachable message, we ensure
that the payload is correct by replacing the packet’s source IP
address with that of the adversary’s destination IP (stored in
destination_ip). The reply is then sent after imposing
the delay constraints.

D. Testbed

Our implementation of topological deception is generalized
to take as input any true network topology. However, for
the purpose of illustration and testing, we use the topology
of Figure 3 as our testbed. In this testbed, there is a single
intelligent router implementing the deception, and a single web
server acting as the destination target.

The realization of this testbed is via virtualization using the
Graphical Network Simulator (GNS3) [20]. GNS3 runs actual

Fig. 3: Example topological deception: solid arcs represent the truthful route provided to the adversary in response to a traceroute
probe. Dashed arcs represent the deceptive route supplied by the intelligent router. Node R3 has the highest CB .

Listing 2: Traceroute results (prior to deception). Device labels
from Figure 3 added for reference
t r a c e r o u t e t o 1 9 2 . 1 6 8 . 5 . 2 (1 9 2 . 1 6 8 . 5 . 2) ,
30 hops max , 60 b y t e p a c k e t s

1 1 9 2 . 1 6 8 . 9 . 1 1 .280 ms (R1)
2 1 9 2 . 1 6 8 . 0 . 2 3 .966 ms (I n t e l l i g e n t Ro u te r)
3 1 9 2 . 1 6 8 . 1 . 2 5 .997 ms (R2)
4 1 9 2 . 1 6 8 . 2 . 2 10 .097 ms (R3)
5 1 9 2 . 1 6 8 . 3 . 2 12 .135 ms (R4)
6 1 9 2 . 1 6 8 . 4 . 2 14 .330 ms (R5)
7 1 9 2 . 1 6 8 . 5 . 2 16 .109 ms (Web S e r v e r)

router images, and allows virtual machines (VMs) to intercon-
nect with any arbitrary assemblage of links. This virtual testbed
allows for easy experimentation by permitting links and hosts
to be changed quickly without the overhead of assembling and
reconfiguring candidate topologies in expensive hardware.

IV. EXPERIMENT RESULTS

This section discusses results based on experiments with
our candidate network topology in Figure 3 and our deceptive
kernel module implementation.

As a baseline against which to assess the quality of our
deception, we start with a standard Linux UDP-based trace-
route to the destination web server in the example topology.
Listing 2 shows the output of the traceroute command when
the deception implementation is withheld. To make the output
listing clearer, we limit the number of probes per TTL hop to
one and include device labels matching the devices in Figure 3.
For each hop, the IP address of the forward-facing interface
of each node is shown in the traceroute output.

A. Random Deception

As alluded to previously, there are a range of possible
deceptions. We begin by performing random deception to
demonstrate the feasibility and promise of the approach. In
this respect, the random deception is similar to radar jamming
or the entrapment capabilities of LaBrea.

We test our ability to generate noise in which we re-
turn random IP addresses to an adversary’s traceroute probe.
The results of random deception are given in Listing 3.
The deception returns Time Exceeded messages containing
randomly generated source IP addresses, thus the adversary
never receives the Port Unreachable message it expects and
continues to probe until it reaches traceroute’s default probe
limit of 30 hops before quitting. Through experimentation we
observe that our implementation periodically fails to respond to

Listing 3: Traceroute results with random deception. Output
truncated to 9 hops
t r a c e r o u t e t o 1 9 2 . 1 6 8 . 5 . 2 (1 9 2 . 1 6 8 . 5 . 2) ,
30 hops max , 60 b y t e p a c k e t s

1 1 9 2 . 1 6 8 . 9 . 1 1 .039 ms
2 1 3 2 . 6 5 . 2 1 8 . 8 7 3 .996 ms
3 2 4 0 . 1 8 4 . 1 4 0 . 1 6 9 3 .935 ms
4 2 4 7 . 1 0 . 1 2 2 . 1 6 4 .178 ms
5 1 5 3 . 5 5 . 1 8 9 . 7 6 3 .956 ms
6 2 5 5 . 2 5 3 . 2 2 . 1 3 4 .126 ms
7 1 1 2 . 5 2 . 1 9 3 . 6 3 3 .942 ms
8 ∗
9 2 1 3 . 2 1 8 . 8 . 1 5 1 2 .829 ms

. . .

incoming traceroute packets resulting in non-responsive hops
being reported by traceroute. The non-responsive hops are
denoted by the asterisks shown in the output listing in Figure 3.
We leave resolution of the bug to future work, but note that
it helps to reinforce the realism of the deception as many real
routers do not generate ICMP Time Exceeded responses, or
otherwise block ICMP.

B. Intelligent Deception

The true test network topology was fed as input to our
Python script to find the node with the highest CB and provide
a false topology with an addition of a single new link that
minimizes this maximum CB . The output of the script is the
kernel module configuration file of Listing 1 and describes the
hops necessary, including the new link, to reach a particular
destination (a web server in our test network). The new link
provides the illusion of additional redundancy in the network
whereby multiple paths can route traffic instead of a single
critical node with the highest CB .

With the kernel module deception running, we act as an
adversary by performing a traceroute to the destination web
server. The intelligent router, detecting the incoming probes,
returns the prescribed deceptive route to the adversary.

In order to ensure that the deception does not impede other
non-traceroute traffic, the browser on the adversary’s machine
is used to view the web pages provided by the web server.
Correct operation of the deception is further determined by
attempting to traceroute to devices other than the web server
where the deceptive route is not returned to the adversary.

C. Deceptive Route

Our Python analysis script finds that the the most vulner-
able node in the example topology is R3 with CB=0.714.

Listing 4: Traceroute results (after deception). Device labels
from Figure 3 added for reference.
t r a c e r o u t e t o 1 9 2 . 1 6 8 . 5 . 2 (1 9 2 . 1 6 8 . 5 . 2) ,
30 hops max , 60 b y t e p a c k e t s

1 1 9 2 . 1 6 8 . 9 . 1 2 .478 ms (R1)
2 1 9 2 . 1 6 8 . 0 . 2 15 .078 ms (I n t e l l i g e n t Ro u te r)
3 1 9 2 . 1 6 8 . 4 . 2 22 .520 ms (R5)
4 1 9 2 . 1 6 8 . 5 . 2 32 .739 ms (Web S e r v e r)

To minimize the maximum centrality, we find that adding a
link between the intelligent router and R5 yields a new be-
tweenness value for R3 of CB=0.381. The resulting deception
is generated as the kernel configuration of Figure 1. In the
configuration file, 192.168.0.2 corresponds to the intelligent
router, 192.168.4.2 to R5, and 192.168.5.2 to the destination
web server. Figure 3 illustrates the deceptive route described by
the configuration file. The solid arcs represent the truthful route
provided to the adversary in response to a traceroute probe.
Once the probe reaches the intelligent router, the adversary is
then deceived. The dashed arcs represent the deceptive route
supplied to the adversary by the intelligent router.

Listing 4 shows the actual output of traceroute when run by
the adversary when the deception implementation is deployed
on the testbed. From Listing 4 we see that the returned
deception matches the configuration file. Because R1 is in
front of the intelligent router, it truthfully reports its presence
to traceroute. The intelligent router also truthfully reports its
presence to the adversary, but all subsequent packets sent elicit
deceptive, spoofed replies generated by the intelligent router
in response. Finally, the adversary’s traceroute probe receives
the Port Unreachable message it expects for the destination
192.168.5.2 and terminates normally.

V. CONCLUSION

We implement a topology deception kernel module for a
Linux router. The module inspects traffic at network ingress
and identifies inbound UDP traceroute probes to which it gen-
erates spoofed replies to provide the illusion of any topology
of the deceiver’s choosing.

Our research demonstrates that a UDP-based traceroute
probe may be deceived in non-trivial ways. However this
initial effort leaves several avenues for future work [21]. For
example, we considered other deceptive implementations. In
a centralized approach, the intelligent router might identify
incoming traceroute probes and shunt them into an enclave
of virtual machines where a network is simulated to provide
the deceptive topology. In a more distributed approach, rather
than shunting traffic, the probe is permitted to traverse the true
network. However the true network contains a set of virtual
machines that are integrated into the topology to provide
deceptive nodes and links. We leave a complete exploration
of the benefits of each alternate approach to future work.

However, an implementation targeting UDP-based trace-
route alone is insufficient. An adversary can easily run
traceroute-style probes using TCP or ICMP rather than UDP.
Future work should consider the fidelity of deception against
a variety of sophisticated mapping techniques. Furthermore,
a topological deception is itself not the goal. As is the case
with operations in the physical domain, military deception in

cyberspace should be employed in support of other operations.
For instance, topological deception may be used to augment
the capabilities of a honeypot to lure an attacker into revealing
his or her tactics.

As the cyber domain continues to grow in importance
to military operations, novel techniques are required to de-
fend networks against increasingly sophisticated attackers. Our
work takes inspiration from recent moving target defense
initiatives [10] that attempt to increase the complexity and cost
of an adversary’s attack by shifting and changing over time.
Although the implementation of topological deception in this
work represents proof-of-concept only, ongoing development
of the research presented herein may well complement other
cyber operations and prove to be a useful application of
military deception and moving target defense in cyberspace.

REFERENCES

[1] U.S. Department of Defense. (2011, July) Department of Defense
Strategy for Operating in Cyberspace.

[2] D. Butskoy. (2013) traceroute. [Online]. Available:
http://traceroute.sourceforge.net/

[3] Internet Control Message Protocol, Internet Engineering Task Force
Std. 792, 1981. [Online]. Available: http://www.ietf.org/rfc/rfc792.txt

[4] C. Trowbridge, “An overview of remote operating system fingerprint-
ing,” SANS Institute, Tech. Rep., July 2003.

[5] L. Spitzner, Honeypots: Tracking Hackers. Boston, MA: Addison-
Wesley Longman Publishing Co., Inc., 2002.

[6] B. Whaley, “Toward a general theory of deception,” Journal of Strategic
Studies, vol. 5, no. 1, pp. 178–192, March 1982.

[7] R. Beverly, “A robust classifier for passive TCP/IP fingerprinting,” in
Passive and Active Network Measurement, 2004, pp. 158–167.

[8] M. Smart, G. R. Malan, and F. Jahanian, “Defeating TCP/IP stack
fingerprinting,” in Proceedings of the 9th conference on USENIX
Security Symposium - Volume 9, 2000, pp. 17–17.

[9] E. E. Frederick, “Testing a low-interaction honeypot against live cyber
attackers,” M.S. thesis, Naval Postgraduate School, Monterey, CA, 2011.

[10] S. Jajodia, Moving target defense: creating asymmetric uncertainty for
cyber threats. Springer Science+ Business Media, 2011, vol. 54.

[11] J. Yuill, D. Denning, and F. Feer, “Using deception to hide things from
hackers: Processes, principles, and techniques,” Journal of Information
Warfare, pp. 26–40, 2006.

[12] B. Augustin, X. Cuvellier, B. Orgogozo, F. Viger, T. Friedman, M. Lat-
apy, C. Magnien, and R. Teixeira, “Avoiding traceroute anomalies with
paris traceroute,” in Proceedings of the 6th ACM Conference on Internet
measurement, 2006.

[13] T. Liston. (2013) LaBrea. [Online]. Available:
http://labrea.sourceforge.net/

[14] L. C. Freeman, “A Set of Measures of Centrality Based on Between-
ness,” Sociometry, vol. 40, no. 1, pp. 35–41, Mar. 1977.

[15] D. J. Watts and S. H. Strogatz, “Collective dynamics of ’small-world’
networks,” Nature, vol. 393, no. 6684, pp. 440–442, Jun. 1998.

[16] A. A. Hagberg, D. A. Schult, and P. J. Swart, “Exploring network
structure, dynamics, and function using networkx,” in Proceedings of
the 7th Python in Science Conference, G. Varoquaux, T. Vaught, and
J. Millman, Eds., Pasadena, CA USA, 2008, pp. 11 – 15.

[17] IANA, “IP Option Numbers,” 2013. [Online]. Available:
http://www.iana.org/assignments/ip-parameters/ip-parameters.xml

[18] The Netfilter.org Project. (2013) iptables. [Online]. Available:
http://www.netfilter.org/

[19] D. Malone and M. J. Luckie, “Analysis of ICMP Quotations,” in Passive
and Active Network Measurement, 2007, pp. 228–232.

[20] J. Grossman, B. Marsili, C. Goudjil, and A. Eromenko. (2013) GNS3
Graphical Network Simulator. [Online]. Available: http://www.gns3.net/

[21] S. T. Trassare, “A technique for presenting a deceptive dynamic network
topology,” M.S. thesis, Naval Postgraduate School, Monterey, CA, 2013.

