
Tracefilter: A Tool for Locating Network Source Address
Validation Filters ∗

USENIX Security ’07 Poster

Robert Beverly
MIT CSAIL

rbeverly@mit.edu

Steven Bauer
MIT CSAIL

bauer@mit.edu

1. BACKGROUND
The Internet architecture includes no explicit notion

of authenticity and forwards packets with forged head-
ers. Malicious users capitalize on the ability to “spoof”
source IP addresses for anonymity, indirection and am-
plification [11].

As good Internet citizens, many networks implement
source address validation best common practices [6, 1].
However, current anti-spoofing filtering techniques are
hindered by an incentive problem. A provider can follow
all best practices and still receive anonymous, malicious
traffic from third-parties who do not properly filter. As
a result, both previous research [2] and recent attacks,
e.g. [7, 10], demonstrate that source address spoofing is
a viable attack vector.

Filtering presents a conundrum for network opera-
tors. Conventional wisdom dictates that ingress filter-
ing is performed near the edges of the network rather
than the core. Within the core, filter lists become un-
manageably large, or may block legitimate traffic due
to multi-homing and routing asymmetry1. However
the edge of the network contains the largest number of
devices and interfaces. Thus appropriately deploying,
managing and maintaining these filters is operationally
challenging. For example, Bush et al. show more than
10% of all autonomous systems filter traffic to and from
newly assigned address space [5].

This research examines where in the Internet source
address validation filters are employed. We introduce
“tracefilter,” a new, novel filter location technique2. Our
initial results from live Internet measurements find 80%
of filters within two hops of sources.

2. TRACEFILTER
The time-to-live (TTL) field in an IP packet is decre-

mented by each router along the forwarding path in

∗This work supported in part by Cisco Systems
1Less restrictive forms of reverse path filtering allow partial
filtering in some cases of asymmetry
2We thank John Curran for the fruitful conversation which
germinated the idea for tracefilter

 Filtering Depth

ServerSpoofer
Client

1. Spoof Server Source with
 incrementing TTL 2. Unfiltered path generates

 an ICMP TTL exceeded

3. Server Records Path

Figure 1: Tracefilter localizes source validation
filters: 1) Client sends spoofed packet with
TTL=2, src=S, dst=S + 1. 2) With no filter-
ing along first two hops, the packet expires,
generating an ICMP TTL exceeded message to
the server. 3) For each originating TTL, the
server records which spoofed packets are re-
ceived. Client tests entire path; the largest TTL
indicates filtering point.

order to prevent routing loops. When the TTL reaches
zero, the packet expires and the router generates an
ICMP TTL exceeded message back to the source of the
packet [4]. In the same spirit as traceroute [8], trace-
filter depends on TTL expiration and ICMP.

Tracefilter works in conjunction with a server S we
maintain. An invocation of tracefilter on a client C

sends spoofed source UDP packets with TTLs from 1 ≤

ttl ≤ d. The spoofed packet’s IP source is the server
S. In this way, our server receives and processes any
ICMP messages the packet generates 3. The destination
address on packets sent by tracefilter is S + 1, an IP
address on the same subnetwork as the server. While
the destination address need only be a valid IP address,
we use S + 1 to test a valid, congruent path.

As spoofed source packets are sent into the network,
those that are not blocked by a filter elicit ICMP TTL
exceeded messages sent to S. A tracefilter run in progress
is shown in Figure 1. Tracefilter is testing the second

3While tracefilter is a measurement utility, a malicious party
could spoof in this way as an ICMP DoS technique.

1

SRC: S DST: S+1 DST: 53SRC: SessIDTTL: 3 000

IP UDP Payload

Len: 11SRC: SessID

UDP

SRC: S DST: S+1 TTL: 0Type: Time Exceeded

ICMP IP

Figure 2: Tracefilter packet format and resulting
ICMP TTL exceeded messages. To encode an
originating TTL of 3, the tracefilter UDP packet
contains a three byte payload. To decode the
originating TTL from the ICMP message, S ex-
tracts the UDP length from the ICMP quotation
and computes TTL = Len − 8.

hop along the path from C to S for filtering, so sends
spoofed source packets with ttl = 2. A source address
validation filter will determine that S belongs to a differ-
ent portion of the network, therefore any packets with
source S should not have originated from the network
to which C is attached and hence should be dropped. If
no filtering is in place for ttl = 2, the second hop router
will generate an ICMP message to S. S then infers no
blocking on the portion of the path up to that router.

How can S reliably determine the originating TTL
of packets C sends? ICMP TTL exceeded messages
include only the first 28 bytes of the original packet (the
IP header plus the first 64 bits of payload) [9]. Thus,
the ICMP message quotation includes only the IP and
UDP headers of the packet that triggered the message.

The TTL of the packet which generates the ICMP
TTL exceeded message is by definition zero. To encode
the originating TTL, we pad the payload of the trace-
filter packets so that the UDP length field encodes the
originating TTL value. Our server then recovers the
originating TTL of each tracefilter packet by decoding
the UDP length field contained within the ICMP mes-
sage body. By recording the largest received TTL from
a client, the server can infer the number of hops along
the path from the client to our server where spoofing
filtering is employed. Figure 2 shows the format of the
tracefilter packets and the ICMP TTL exceeded mes-
sages they generate.

A final detail is how C determines the maximum TTL
to test. The client could use a fixed maximum TTL or
attempt to infer the distance itself via traceroute, but
we want a more principled approach. Instead, tracefilter
begins by measuring the IP path length between C and
S. Tracefilter sends non-spoofed UDP packets with a
TTL set to 64 so that our server can infer the IP hop
length of the tested path. S extracts the TTL value
from the received UDP packets and computes a distance
d = 64 − TTLrecv. The server then communicates this
distance d to the client.

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 4 6 8 10 12

C
um

ul
at

iv
e

Fr
ac

tio
n

of
 C

lie
nt

s

Filter Depth

Figure 3: Cumulative distribution of inferred fil-
ter depth (IP hops from sender)

3. RESULTS
We implemented tracefilter as part of the ANA Spoofer

Project [3]. The results here are from approximately
1300 client runs distributed across the Internet. Figure
3 shows the cumulative distribution of provider filter
depth, measured in IP hops from the client, as inferred
by tracefilter. 80% of the clients are filtered at either
the first or second hop router.

Thus, these results suggest that networks today gen-
erally rely upon the edges to properly validate source in-
formation. If spoofed packets make it through the first
few hops into the network, a spoofed packet is likely to
travel unimpeded to the destination.

4. REFERENCES
[1] F. Baker and P. Savola. Ingress Filtering for Multihomed

Networks. RFC 3704 (Best Current Practice), Mar. 2004.
[2] R. Beverly and S. Bauer. The spoofer project: Inferring the

extent of source address filtering on the internet. In
Proceedings of USENIX Steps to Reducing Unwanted
Traffic on the Internet (SRUTI) Workshop, pages 53–59,
July 2005.

[3] R. Beverly and S. Bauer. The spoofer project, 2006.
http://spoofer.csail.mit.edu/.

[4] R. Braden. Requirements for Internet Hosts -
Communication Layers. RFC 1122 (Standard), Oct. 1989.
Updated by RFCs 1349, 4379.

[5] R. Bush, J. Hiebert, O. Maennel, M. Roughan, and
S. Uhlig. Diagnosing the location of bogon filters. NANOG
40, June 2007.
http://www.nanog.org/mtg-0706/bush.html.

[6] P. Ferguson and D. Senie. Network Ingress Filtering:
Defeating Denial of Service Attacks which employ IP
Source Address Spoofing. RFC 2827 (Best Current
Practice), May 2000. Updated by RFC 3704.

[7] A. Heffernan. Protection of BGP Sessions via the TCP
MD5 Signature Option. RFC 2385 (Proposed Standard),
Aug. 1998.

[8] V. Jacobsen. Traceroute, 1988. ftp://ftp.ee.lbl.gov.
[9] D. Malone and M. Luckie. Analysis of ICMP quotations. In

Proceedings of the 8th Passive and Active Measurement
(PAM) Workshop, Apr. 2007.

[10] NANOG. DOS attack against DNS?, 2006. http://www.
merit.edu/mail.archives/nanog/2006-01/msg00279.html.

[11] V. Paxson. An analysis of using reflectors for distributed
denial-of-service attacks. Computer Communications
Review, 31(3), July 2001.

2

