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Abstract—The wireless boundaries of networks are becom-
ing increasingly important from a security standpoint as the
proliferation of 802.11 WiFi technology increases. Concurrently,
the complexity of 802.11 access point implementation is rapidly
outpacing the standardization process. The result is that nascent
wireless functionality management is left up to the individual
provider’s implementation, which creates new vulnerabilities in
wireless networks. One such functional improvement to 802.11 is
the virtual access point (VAP), a method of broadcasting logically
separate networks from the same physical equipment. Network
reconnaissance benefits from VAP identification, not only because
network topology is a primary aim of such reconnaissance, but
because the knowledge that a secure network and an insecure
network are both being broadcast from the same physical
equipment is tactically relevant information. In this work, we
present a novel graph-theoretic approach to VAP identification
which leverages a body of research concerned with establishing
community structure. We apply our approach to both synthetic
data and a large corpus of real-world data to demonstrate its
efficacy. In most real-world cases, near-perfect blind identification
is possible highlighting the effectiveness of our proposed VAP
identification algorithm.

I. INTRODUCTION

A common requirement when designing enterprise wireless
networks is to support authenticated users in parallel with
unauthenticated guest users. This often takes the form of
two separate networks with separate Service Set IDentifiers
(SSIDs) (i.e., for instance MyNetwork and MyNetwork Guest).
This has been accomplished in the past by putting multiple
Access Points (APs) together, each one hosting a separate
SSID. Motivated by a desire to eliminate redundant hardware
and reduce deployment costs, a feature known as Virtual
Access Points (VAPs) is often included in modern enterprise
APs (and sometimes consumer-grade APs as well).

Traditionally, a wireless AP hosts a single wireless network
configured with specific settings, including channel, SSID,
and encryption. However, APs with VAP functionality can
host multiple wireless networks, each with its own SSID and
security settings.

Since multiple VAPs run on a single physical AP, the
least secure network being offered by an AP may be used
by an attacker as an attack vector to gain access to the
hardware. After connecting to an unsecured network, it may
be possible to take control of the device or escalate access
to one of the secured networks. It has been reported that
many APs allow access to the internal configuration page from
guest networks [1]. This access could be combined with poor
AP configuration, default administrator passwords, or local
software vulnerabilities to gain control of the AP [2].

Because of this useful added attack vector, an interesting
research question arises: is there a systematic way to determine
if two VAPs with different SSIDs and Basic Service Set IDen-
tifiers (BSSIDs) are being hosted by the same physical AP?
Although some networks are configured with straightforward
naming conventions (i.e., MyNetwork and MyNetwork Guest),
this is not always the case. Moreover, there are often more than
two VAPs hosted on a single device, and sometimes even VAPs
with hidden SSIDs, further complicating the VAP ecosystem.

Related work in the literature is largely geared towards
using VAP functionality to improve user experience in 802.11
networks. Specifically, work has been done to manage user
mobility in WiFi networks through usage of VAPs [3], [4].
Additionally, indoor localization is another genre of research
that has specifically addressed VAPs [5], [6]. Due to multipath
artifacts during collection researchers have largely settled on
fingerprint methods as the most viable solution for indoor
localization. Fingerprint methods utilize a radio-frequency
(RF) signature recorded at various locations in the area of
interest. However, because the VAPs all transmit from the
same physical hardware their resulting signatures are nearly
identical, and thus redundant. Indoor localization methods
seek to identify these redundancies and remove them in
order to save in computational cost. The authors in [5] did
this by defining a graph of which the vertices represented
BSSIDs. Edges, or similarities, were defined by a correlation
coefficient calculated from signal strength. A clique analysis
was then performed to identify potential sources of redundant
information (i.e., VAPs).

While the authors in [5] were more tolerant of false positive
results, we seek greater precision to aid in a more surgical
approach to network reconnaissance and attack vector identi-
fication. To this end, we explore methods of defining similarity
other than signal strength by exploiting unencrypted attributes
in 802.11 available to a passive listener. Specifically, in this
paper, we use data from broad-scale 802.11 collection to:
• develop a novel multi-dimensional graph-theoretic frame-

work for VAP correlation,
• develop a new voting map f to project the multi-

dimensional representation into a space suitable for VAP
correlation,

• demonstrate the effectiveness of this method on both
synthetic and real-world large data sets, and

• conduct an extensive survey of 802.11 parameters over
600 GBs of real-world data that motivates our approach
and illuminates current trends in VAP deployment.
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First we identify several features of wireless traffic between
APs and clients that can be used to indicate that two or more
VAPs are colocated on the same physical device. Then, we
represent traffic between clients and APs as an undirected
graph, with the weights of each edge being determined by
these features. After applying standard graph partitioning
techniques, this ultimately leaves us with connected subgraphs
that represent VAPs.

We go on to experimentally validate our approach against
both simulated data and real-world WiFi traffic. When tested
on these data, we achieve precision of .99 and recall of 1.0,
showing that our approach is both accurate and robust.

II. 802.11 ACCESS ECOLOGY

A. AP Discovery

The IEEE 802.11 standard affords client devices the ability
to discover nearby APs using active or passive scanning
techniques [7]. The simplest form of discovery is passive
scanning, where a device rotates through each 802.11 channel
waiting to receive beacon frames from nearby APs, which are
broadcast at regular intervals. Upon receiving a beacon frame,
the device will update its available networks list.

Instead of just waiting for the beacons, active scanning can
be done by transmitting probe request frames as the client
rotates through the available channels. As the name suggests,
these frames request nearby APs to respond and notify the
device that they are within range. A probe request frame
may be sent as a directed probe, targeting a single AP, or a
broadcast targeting all nearby APs. A broadcast probe contains
an empty SSID attribute (known as a wildcard SSID), while a
directed probe has a specific SSID or name of an AP. APs in
range receiving the probe will reply to the probe request with
a probe response frame as depicted in Figure 1.

The use of directed probe requests, has over time been
purposely limited due to growing privacy and tracking con-
cerns [8], [9]. Directed probes are typically only observed
in practice when a device is searching for APs with hidden
SSIDs [10]. This is necessary because hidden SSID networks
will not respond to broadcast probe requests. An AP config-
ured with a hidden SSID also removes the SSID value when
transmitting beacon frames. Ultimately, the use of hidden
SSIDs has generally been found to provide little obfuscation
value, as multiple techniques exist to recover the AP’s hidden
SSID [11]. Regardless, they remain in use and can cause
devices to be subject to unnecessary privacy leaks [10].

B. VAP Framework

In the original 802.11 standard, ratified in 1999, an AP
consisted of a single BSSID and SSID. Strictly interpreted,
the standard mandates the use of a single SSID per BSSID.
With the proliferation of 802.11 enabled devices in today’s
environment, there exists a growing requirement for more
robust network designs. Consideration of congested channel
environments, where various network providers wish to pro-
vide network services, highlights an exemplar case for AP
configurations allowing multiple SSIDs. The inherent benefits
are two-fold: a reduction in infrastructure cost, and an efficient
use of the limited channel spectrum. This multi-SSID AP
configuration is often described as a VAP. In Figure 1, we
contrast the VAP architecture to the traditional single-SSID
architecture.

There exists no industry standard delineating an official
name, configuration, or implementation for VAPs. Often ven-
dor data-sheets refer to the capability as a multi-SSID option,
in others, the capability is labeled as a VAP. For our purposes
we make the following definition.

Definition 1. A VAP is a logical segmentation of a single
physical AP at the Media Access Control (MAC) layer.

Each VAP is thereby represented by a separate SSID and a
unique BSSID (cf. Figure 1). Each distinct VAP on a device
may be configured with different MAC settings, Internet Pro-
tocol (IP) settings, security settings, network ranges, Dynamic
Host Configuration Protocol (DHCP) pools, etc., allowing
for a wide range of network designs applicable to numerous
scenarios. Of note, each VAP on a single device shares the
same wireless channel and physical layer properties.

III. VAP SIMILARITY FEATURES

In this section, we present some possible metrics for deter-
mining whether two or more BSSIDs are actually hosted on
the same physical AP. From this set of possible features, we
will later select those which maximize our chance of correctly
correlating BSSIDs to a single device. The feature space will
then define a metric of closeness between BSSIDs represented
by a graph G.

Consider a set of BSSIDs that occur in observed 802.11
traffic and let νi represent the ith BSSID. Each νi will
then represent a vertex in G. Further, let the set of all
M observed BSSIDs originating from the same device be
V ≡ {{ν1}, {ν2}, . . . , {νM}}.



We find that two management frames are inherently pre-
disposed to VAP correlation: beacon and probe response
frames. These management frames are by design unencrypted
as they support the network discovery process. Beacons are
transmitted at a default rate of 100 ms [7] providing a
steady stream of potential data from which to correlate VAPs.
Probe responses, while not observed at the same rate of
occurrence, are effectively always available in environments
where client devices are present. Additionally, probe request
frames describe natural edges in that they represent client-AP
interaction. This forms a legitimate framework for community
structure in the resulting graph G. Conversely, beacon frames
are connectionless and elicit no explicit response, thus do not
carry as much inherent information as probe responses. We
therefore focus the remainder of our study on the analysis of
probe response frames.

The remainder of this section considers in order Information
Elements (IEs), MAC address structure, and probe response
reception time as possible features useful for VAP correlation.

A. Management Frame Information Elements

Probe response frames contain various configuration and
device specific details within IE fields. The IE attributes are
made up of both mandatory and optional parameters utilized
as part of the AP discovery and selection process. We inspect
a variety of these fields for potential use as feature sets in our
study.

1) Beacon Interval: This mandatory two-byte IE represents
the number of Time Units (TUs) between successive beacon
frame transmissions [7]. The beacon interval is commonly set
to a default of 100 TU but can be manually configured by a
network administrator.

Proposition 1. Vertex νi is not similar to vertex νj if

βi 6= βj , (1)

where βi is the beacon interval set for νi.

It follows as possible, although not certain, that βi = βj if
{{νi}, {νj}} ⊂ V . However, because the default β is rarely
changed, it is much more likely that βi 6= βj if {{νi}, {νj}} 6⊂
V . Beacon interval is, therefore, a better discriminator of what
VAPs are not correlated than a correlation feature.

2) Timestamp: An eight-byte timestamp field contains a
value depicting a synchronization timer of the frame’s source
AP [7]. The purpose of this field is to provide a mechanism
to ensure synchronization across all devices on the network.

Proposition 2. Vertex νi is similar to vertex νj if

|τi − τj | = ∆τij < ετ , (2)

where τi = τ̂i− tr and τ̂i is the timestamp of νi and tr is the
time of reception.

Naturally, all VAPs of a distinct device maintain a shared
timing function. We therefore expect the timestamp IE to be
a strong correlation feature as it specifically represents the
number of microseconds the AP has been active [12]. It will

therefore always be the case that |τj − τi| = ∆τij < ετ for
VAPs on the same device, but not necessarily true that |τj −
τi| = ∆τij ≥ ετ for VAPs on different devices. For instance,
if a local area looses power, once power is restored it is likely
that all devices in that area will have a similar τ̂ and therefore
similar τ . We have purposely defined this similarity feature in
terms of ετ in order to account for a time-varying propagation
channel and variable transmit/receive queuing delay.

3) Sequence Number: A twelve-bit field indicates the cur-
rent sequence number of a frame [7]. Each subsequent frame
sent by a wireless device increments the sequence number
modulo 4096.

Proposition 3. Vertex νi is similar to vertex νj if

|si − sj | = ∆sij < εs, (3)

where si and sj are the sequence numbers attached to probe
responses from νi and νj respectively.

We assume packets sent from the same device will be num-
bered sequentially regardless of logical separation of higher-
layer entities, thus this proposition assumes that VAP probe
responses happen approximately (to within εs) sequentially.
The expectation of approximate sequence as opposed to a strict
sequence guards against the probability of missed packets.
Of note, one difficulty associated with this approach is that
the packet numbering happens modulo 4096. It can then be
verified that if 29 different APs all receive a probe request
and εs = 5 there is a 50% chance of VAPs being incorrectly
correlated via sequence number.

4) Vendor Specific IEs: In addition to mandatory IE fields
vendors often include proprietary fields commonly called
Vendor Specific IEs. Our review of these fields indicate the use
of a VAP ID attribute within several prominent manufacturers’
probe response frames.

Proposition 4. Vertex νi is similar to vertex νj if

vi = vj , (4)

where vi is the VAP ID of νi.

Using the derived identifier, we are able to trivially link
the VAPs to a distinct physical device. However, similarity as
defined by this proposition, does not always follow since the
VAP ID field is not mandatory and therefore not used by all
manufacturers.

5) Device Signature: Lastly, we consider a device sig-
nature approach [10], [13], where the set of IEs within a
probe request are combined to construct a device signature
si = [s1, s2, . . . , sN ]T for νi where si is the ith IE. Example
IEs include:

Proposition 5. Vertex νi is similar to vertex νj if

si = sj , (5)

where si is the signature of vi.

The expectation then is that the VAPs of a distinct device
share the same device signature.



Algorithm 1 Proposed VAP-Identification Scheme

for k ∈ FeatureSet do
Ĝ =

∏
kAk

end for
f : Ĝ→ G = ∪iGKi

for i ∈ G do
V←modularityPartition(GKi

)
end for

B. MAC Address Structure

Proposition 6. Vertex νi is similar to vertex νj if the middle
four octets of the MAC addresses belonging to νi and νj are
identical.

It is well-known that the organizationally unique identifier
(OUI) of a MAC address identifies a particular vendor. How-
ever, since an AP may modify the locally assigned bit when
enabling VAPs, the second and third octets can additionally
provide a more robust correlator of colocated VAPs. Further,
by observation of empirical data, it is very likely that an
implementation of a MAC address scheme on a single piece of
hardware will increment only the last octet, leaving the middle
four octets unchanged. However, because this is entirely by
uncodified convention, it will not necessarily always hold.

C. Reception Time

Proposition 7. Vertex νi is similar to vertex νj if

|ti − tj | = ∆tij < εt (6)

where ti and tj are the times of reception at client uk of a
probe response from νi and νj respectively.

This proposition captures the idea that probe responses
from VAPs resident on the same device should be received,
queued, and returned to the requester as probe responses at
a similar time for each VAP. While it is conceivable that
two probe responses could reach a client uk at a similar
time by chance, especially in dense AP environments where
propagation time differences between devices are small, we
submit reception time as a possible vendor-agnostic feature
for correlating VAPs.

IV. GRAPH THEORETIC APPROACH

In this section, we present our graph theoretic approach to
VAP identification (outlined in Algorithm 1) which leverages
similarity features discussed in the previous section. We begin
by formally defining vertex adjacency, and then go on to take
that definition and use it in a graph-partitioning approach to
finding community structure (i.e., correlating VAPs to multi-
BSSID APs).

A. Vertex Adjacency

Let the ith client be represented by ui such that the set of
all C observed clients be u = [u1, u2, . . . , uC ]T . Finally, let
V{K}i represent the ith subset of BSSID(s) originating from
the same device where K ≥ 1 is the number of BSSID(s)

associated with device ui. Therefore, if K > 1 then each
νi ∈ Vi is considered a VAP, and if K = 1, the singleton
member is the only BSSID associated with the AP.

Definition 2. Vertex νi is adjacent to vertex νj iff νi and νj
transmit a probe response to client uk and i 6= j.

This definition captures the idea of structure in that they
have both interacted with the same client. In the case of a
device assigned multiple BSSIDs (i.e., VAPs), we expect this
to be the case since upon reception of one probe request from a
single client, the VAPs will send K probe responses ∀νi ∈ V .
This behavior will create

(
K
2

)
edges and thus the complete

graph GK . The graph structure of G is represented by an
adjacency matrix A defined by

A =


0 ω1,2 · · · ω1,M

ω2,1 0 · · · ω2,M

...
. . .

...
ωM,1 ωM,2 · · · 0

 , (7)

where ωi,j = ωj,i ≥ 0 iff νi is adjacent to νj and ωi,j = 0
otherwise.1

B. Multi-Dimensional Representation

We may then define a multi-dimensional graph Ĝ for each
of the similarity metrics via

Ĝ =
∏
k

Ak. (8)

Alternatively, the various graphs Ak may be viewed as multi-
ple dimensions of the overall graph Ĝ, a perspective we hold
throughout the remainder of this paper. Optimal projection of
the information from each of these dimensions into a single
dimension, represented by graph G, is accomplished by the
map f : Ĝ → G. f is then defined as a voting function as
follows.

Let the empirical mean of Ak be represented by

µ̂k =
1

ek

∑
ij

Ak{i,j} , (9)

where ek is the number of edges represented in Ak, and {i, j}
is the row/column index of Ak. Next, if the edge {νi, νj}
exists in Ak, let the vote for each edge {νi, νj} in G to be
connected be

wij =
∑
k

Ck
µk
µ̂k, (10)

where Ck is a scaling constant and µk is the expected value
of the nonzero edge weights in Ak. Otherwise, if the edge
{νi, νj} does not exist in Ak, let the vote for each edge in
{νi, νj} in G to not be connected be

w̃ij =
∑
k

Ck
µk
µ̂k. (11)

1Note that Definition 2 precludes self edges, thus the diagonal of A will
always be zero.



By normalizing each of the empirically calculated means µ̂k
by the actual expected mean µk, we provide a method of
comparing the relative certainty or weight from one similarity
feature with another. The constant Ck provides a heuristic
means of adjusting the relative voting weight of each of the
K features based on the amount of information that feature
carries.

Finally, G is constructed via

A′ij =

{
1 if wij ≥ w̃ij
0 o.w. . (12)

Thus, the final G is undirected, unweighted, and symmetric.
We also allow for certain features which prove good dis-

criminators, but have poor correlation properties. This infor-
mation is included in f through a series of hadamard products

A = A1 �A2 � · · · �AN �A′, (13)

where there are N discriminators and A′ is the result of (12).

C. Graph Partitioning

In an ideal scenario, using the above definitions of similarity
and voting map f , the resulting G would be disconnected
such that G = ∪iGKi , where each connected portion of the
overall graph GKi is the complete graph on Ki vertices and
GKi∩GKj = {∅}, ∀i 6= j. With this result, each GKi ≡ V

{K}
i

can be interpreted as all νj ∈ GKi
being part of the same VAP

and the method of VAP identification then ends here. However,
it is possible that the above method will produce false edges
between VAP communities. To guard against this, we use a
divisive graph partitioning approach introduced in [14].

Divisive methods of clustering and graph partitioning have
a rich history in the literature [15]–[18]. We focus specif-
ically on the modularity approach [14] due to its relative
success among peer methods for finding natural community
structure in complex networks. Implicitly, at the heart of all
approaches to graph partitioning is a comparison of the graph
in its partitioned state against a null model. The null model
in the modularity approach is a random graph where the
expected degree of each vertex is equal to the actual degree
of each vertex. For a given partition, one can find if the
number of edges within the newly partitioned communities
exceeds the expected number of edges. An affirmative result
indicates a desired partition and a negative result provides a
natural stopping point to the method, something lacking in
other popular graph partitioning tools. Finding the globally
optimum partition requires exhaustive trial; however, good
approximate means of calculating suboptimal partitions can be
done through eigen analysis of the unpartitioned graph [14].
The method also suffers in that it is an inherently successive
approach since each graph is only made into two partitions
at each step. This creates a method susceptible to the local
optimum trap. Nevertheless, it has shown to be robust in the
face of its own shortcomings especially when applied to real-
world data [15]. Because the voting map f : Ĝ → ∪iGKi

reduces the multi-dimensional representation of similarity to
relatively small disconnected subgraphs, and because of the

modularity method’s proven success in the literature we find
it appropriate for our end.

We therefore apply the modularity-based graph partitioning
method as a last step in order to guard against incorrect
incidental correlations. The result of the overall proposed VAP-
identification scheme is V, an unordered set representing the
estimated BSSID relationships.

V. METHODOLOGY

Over the course of approximately two years (January 2015
to December 2016), we captured unencrypted 802.11 de-
vice traffic using inexpensive commodity hardware and open-
source software. We primarily use a Nexus 5 Android phone
running Kismet PcapCapture paired with an AWUS036H
802.11b/g Alfa card. We additionally employ several Rasp-
berry Pi devices running Kismet with three individual wireless
cards. Our corpus encompasses approximately 9,000 individ-
ual packet captures. The collection contains over 600 GBs of
802.11 traffic, consisting of over 2.8 million unique devices.

A. Ethical Considerations

Our collection methodology is entirely passive, leveraging
data that is by design unencrypted. At no time did we perform
active actions to stimulate or alter normal network behavior.
Our intent is to show the ease with which one can build
a similar capability with low-cost off-the-shelf equipment.
However, given the nature of our data collection, we consulted
with our Institutional Review Board (IRB).

The primary concerns of the IRB centered on: i) the
information collected; and ii) whether the experiment collects
data “about whom” or “about what.” Because we limit our
analysis to 802.11 management frames, we do not observe
Personally Identifiable Information (PII). Further, humans are
incidental to our experimentation as our interest is in wireless
device layer-2 MAC addresses, or “what.” Again, we have no
way to map MAC addresses to individuals.

Finally, in consideration of beneficence and respect for
persons, our work presents no expectation of harm, while
the concomitant opportunity for network measurement and
security provides a societal benefit. Our experiment was de-
termined to not be human subject research and approved by
our IRB.

B. Feature Set Assessment

In order to evaluate the efficacy of our feature sets and
the overall results of our algorithm we required a method for
deriving a Truth Table. To this end, we chose to use a subset of
devices with which we can extract a VAP ID. We derived VAP
identifiers using our laboratory equipment to reverse engineer
the proprietary vendor specific IE data fields contained within
probe request frames derived from various Juniper, Ubiquiti,
and Cisco APs. We write custom Wireshark dissectors in order
to efficiently retrieve the VAP identifiers.

First, we evaluate the efficacy of each similarity feature by
parsing a subset of our real-world 802.11 collection where the
VAP identifiers of Juniper and Ubiquiti are present.
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1) VAP identifiers: A logical question arises, if we have
VAP identifiers (ID) then why is their a need for additional
correlation analysis? The answer is three-fold: i) the VAP ID
parameter is not universally implemented by manufacturers, ii)
when used by a manufacturer, not all models utilize the field,
and iii) reverse-engineering each vendor-specific IE requires
extensive analysis, of which is not a feasible large scale
process. As such we limit the use of the VAP ID feature
as a means to measure the precision and recall of our graph
partitioning results.

2) Beacon Interval: The first IE we evaluate is the beacon
interval attribute β. Using our sample set we observe that all
VAPs for a single device share the same beacon interval βi =
βj , ∀{{νi}, {νj}} ∈ V . This indicates that the beacon interval
lends well to use as a discriminator (i.e., VAPs should have the
same beacon interval). However, we observe that the diversity
of beacon interval values is particularly limited. In our sample
set, ≈98% of devices had a beacon interval value of 100 (i.e.,
βi = βj even when {{νi}, {νj}} 6∈ V), and a range of only 10
distinct values. Therefore, the beacon interval acts as a strong
discriminator and weak correlator.

3) Timestamp: Next, we evaluate the timestamp attribute.
We observe that timestamp τ̂ is vendor agnostic and remains
consistent across VAPs on a distinct device. The following
example highlights the value of the timestamp attribute.

Example 1 (No Timestamp). The following two MAC ad-
dresses share similar edges and have the following feature
sets (t, s, β), in which result in a false positive correlation:

t s β
43.266601000 3721 100
43.285206000 3727 100

Example 2 (With Timestamp). Now, using the same two MAC
addresses, sharing similar edges, and now having included
the timestamp we have the feature sets (t, s, β, τ ), accurately
discriminating when τi 6= τj:

t s β τ
43.266601000 3721 100 594964.733399
43.285206000 3727 100 232689.714794

We test this attribute across the entirety of our dataset and
observe a trivial number of devices where the timestamp value
is zero. We expect this is a configuration error, as the parameter
is used as a synchronization function and should always be set.

In order to better define closeness of vertices in terms of
timestamp values, we analyze a dataset of 1,206 successive
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Fig. 3: Reception time ∆ between successive probe responses

probe responses and compare their timestamp difference dis-
tribution in Figure 2. The result is highly uniform with the
exception of a large proportion of the data lying below 100
ms. We then define a representative edge weighting scheme

ωij,τ = 5 · 1[0,0.1](∆τij) + 1(0.1,1.3](∆τij), (14)

where 1(·) is the indicator function.
4) Sequence Number: We evaluate the sequence number

attribute s, using our derived VAP identifiers we observe that
Juniper devices maintain a shared sequence number across
VAPs whereas some Ubiquiti models do not. Similarly, in our
lab setting we observe that some Cisco and Aruba devices use
a shared sequence number while others do not. We remove the
sequence number feature from our algorithm due to ambiguity
in VAP sequence number implementations across vendors and
models as well as the high probability of collisions2 within
dense wireless environments.

5) Device Signature: We test the device signature method-
ology using the derived Ubiquiti/Juniper Truth Tables and
within our lab environment. In both cases, the device signature
method often fails to correlate the VAPs. These results are
not surprising due to the nature of the VAP architecture.
Device signatures are derived from the IEs of the frame
which indicate the VAP-specific settings and parameters. The
inherent motivation for VAP-based implementations is to allow
for customizable and diverse network settings. As such, it
follows that device signatures will likely be different: si 6= sj
for {{νi}, {νj}} ∈ V . We therefore rule out signature analysis
as a useful feature.

6) Reception Time: This feature is closely coupled to the
community structure of our algorithm. Only devices with a
perceived closeness as a function of reception time and having
shared edges are ever assessed as a possible correlated VAP.

To better define vertex similarity in terms of reception
time, we analyze a large multi-vendor dataset consisting of
1,890 identified probe response pairs from the same device
and present the results in Figure 3. The data presented as
exponential with a mean value of 140 ms with a maximum
value at about 1 sec. We can then define an edge weighting
function as

ωij,t = λe−λ∆tij1[0,1](∆t), (15)

where 1/λ =140 ms.

2Recall that the sequence number increments modulo 4096 .



7) MAC Address Structure: Within our Ubiquiti and Juniper
test set we observe the following MAC address allocation
schemas for VAPs:

1) bytes [1-5] remain constant, byte [6] incremented by 2
and

2) byte [1] local bit set, bytes [2-6] remain constant
We note that while these results follow the convention that

the middle four bytes of the MAC address are the same, we do
not have evidence that this holds true across all vendors. Addi-
tionally, consider the following example of two devices (which
do follow the middle-four-byte-MAC convention), taken from
real-world data, each with two configured VAPs:
Example 3 (Middle-four-byte-MAC Convention).

78:19:F7:73:7E:01
78:19:F7:73:7E:03
78:19:F7:73:7E:C0
78:19:F7:73:7E:C2

In this case, the first two MAC addresses are VAPs from
the same device and the last two MAC addresses are VAPs
from a different device. A graph based on the middle-four-byte
convention would be G ∼= K4. This would result in all four
VAPs identified as belonging to a single AP. Due to a lack
of standardization, and what appears to be a manufacturer and
model defined schema that would lead to false positives in our
data set, we chose to remove the MAC address structure from
the feature set.

C. Simulated Results

In order to determine an optimal methodology for VAP
identification, we used a simulated environment to generate
packet capture (PCAP) files. In each simulation, some number
of APs are deployed uniformly over an area of 100 m ×
100 m. Some number of clients are then generated and move
through the area from a randomly generated point of origin. As
each client comes within range of an AP its probe request(s)
trigger(s) probe response(s). In order to capture the random
nature of the wireless channel, connectivity is modeled as
random variable R such that the probability of reception due
to shadowing, as a function of distance d, is given by

pR(d) = 1− Φ

(
d− µ
σ

)
, (16)

where µ = 30 m and σ = 3 m. Here, Φ(·) is the cumulative
distribution function of a Gaussian random variable with mean
µ and variance σ.

D. Feature Efficacy

We first seek to evaluate the efficacy of the various features
indicative of a VAP outlined previously in this section. To
this end, Monte-Carlo trials of the aforementioned simulation
are done only with individual correlative dimensions of Ĝ only
(i.e., there is no information fusion and β is not included since
it is used only as a discriminator).

After the graph Ĝ is built using only one dimension (i.e.,
only one feature k ⊂ {{t}, {τ}}) it is partitioned as per
Algorithm 1 for k = 1. The results of each individual effort

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

F-Value

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Cu
m

ul
ati

ve
 P

ro
ba

bi
lit

y

Time

Timestamp

Fig. 4: VAP features evaluated through Monte-Carlo trials

are presented in Figure 4 over 1,000 trials each. Efficacy is
measured as F score, a function of both precision and recall,
where an F score of 1 denotes perfect VAP identification for
the given data. For our application, precision is defined as a
ratio of the number of correct graph edges identified to the
total number of graph edges identified. Recall is defined as
the ratio of the number of correct graph edges to the total
number of true graph edges.

As is evident from the results in Figure 4, the ability of
timestamp to correlate VAPs far outweighs that of reception
time. It therefore makes sense that the timestamp dimension is
weighted higher in the voting map f (i.e., Cτ > Ct, cf. (10)–
(11)). However, it is also seen that reception time does have
some correlative properties. It therefore has intrinsic value
which this identification scheme profits from. Despite the small
overall value added by time-based correlation, consider the
following two cases. First, we have observed vendor traffic
that has elected to not broadcast the timestamp field. If this is
the case and reception time is not considered, then the results
would clearly be inconclusive. Second, if a building or local
area experiences a power surge, then it would be that all APs
in that area would share similar timestamps as they would all
restart at similar times. This is a second example of where
a second discriminator would be valuable. Finally, we submit
that reception time is a particularly powerful feature in that
it is intrinsically linked to propagation time and thus largely
bound by physics and not software. For the remainder of the
results we let Cτ = 2Ct.

We further restrict our algorithm such that if beacon interval
or arrival time do not identify an edge then an edge is not al-
lowed. This allows for discrimination in β and simultaneously
acknowledges that if two probe responses do not arrive within
εt then they cannot be correlated. This operation is integrated
into the map f by

A = At �Aβ � f(Ĝ). (17)

E. Multi-Dimensional Projection of Feature Information

Here, we seek to collapse the multi-dimensional graph into
one dimension, via the previously discussed map f : Ĝ →
G suitable for the graph partitioning algorithm presented in
Section IV. The most straightforward route to project all of
the information in one dimension would be to average the edge
weights across each of the K dimensions via

ωi,j =
1

K

∑
k

ωk{i,j} . (18)
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Fig. 5: The performance of the voting map f is compared
against taking the mean along each dimension (18) and
then partitioning the resulting graph via the modularity-based
method.

However, this reduction may not yield an optimal result since,
as we have just seen, different layers present a variable amount
of correlative power. As an alternative, we propose a voting
scheme where each dimension casts a “vote” as to whether
or not an edge exists between two vertices. As a result, the
final graph is not weighted (as would be the case in the first
method of edge weight averaging) since the vote is for whether
vertices are similar or not (cf. Equations (9)-(12)).

In order to determine the efficacy of voting, we compare it
in another Monte-Carlo study. Here, Ĝ is collapsed either via
the voting map f or by taking the mean of the graph edges, as
in (18), and then performing a modularity-based partition. In
both cases, the timestamp is weighted twice as heavily as is
reception time (cf. the results in Figure 4). The results of this
study are presented in Figure 5 and suggest that both proposed
methods are equally as effective at VAP identification with a
slight preference given to the voting map. However, when the
modularity-based partitioning is applied to the graph projected
by voting, even more improvement in performance is realized.
It is with this method of voting to reduce dimensionality,
followed by a modularity-based partitioning, that we propose
to best identify VAP structure.

VI. RESULTS

In this section, we present the results of the final VAP
identification algorithm as outlined in the previous sections.
We first evaluate the algorithm on small vendor-specific data
where the vendor-ID field can provide a means to positively
verify results. Next, we apply the algorithm to a much larger
multi-vendor dataset to evaluate performance in a more likely
real-world application.

A. Vendor Specific Data
Here we use real-world data to validate the algorithm’s

efficacy. These data are grouped into three sets by vendor:
Ubiquiti, Cisco, and Juniper. The test data and results are
characterized in Table I. These data show a wide variety of
community structure and also demonstrate the results over
short and long observation periods. As can be seen in the
results, the algorithm is able to correctly identify all of the
VAPs in the Ubiquiti and Cisco data. In the Juniper data, only
one edge is not identified due to imperfections in the wireless
channel.

TABLE I: Test Data and Results by Vendor

Ubiquiti Cisco Juniper

Probe Responses 1446 226 215

BSSIDs 25 7 32

Single-BSSID Devices 2 1 5

Two-BSSID Devices 1 3 3

Three-BSSID Devices 7 0 7

F Score 1 1 0.9787

B. Multi-Vendor Data
In a real-world implementation, data would likely contain

multiple vendors. Additionally, our algorithm provides sig-
nificant value by automating results over a large dataset as
opposed to a traffic analysis approach which is manpower
intensive but works well on small datasets. We therefore, move
to consideration of two large sets of multi-vendor data.

The first set contains 62 different physical devices. Of these
APs, the algorithm identified 14 as VAP-enabled. Of the 14
VAP-enabled devices ten are correctly identified and four are
each missing exactly one observed BSSIDs (i.e., for these four
devices all BSSIDs which belong to the VAP were correctly
correlated with the exception of a single hidden SSID node).
The remaining 48 single-BSSID devices were also correctly
identified. With this data set, the VAPs were all identified with
(17) and did not require further graph partitioning. We attribute
this to the heterogeneous nature of the underlying data which
is a result of a less dense distribution of APs.

The second set contains 504 APs, of which the algorithm
identified 101 as VAP-enabled. These data contained a more
dense AP distribution and thus invoked the partitioning step
in the case of two VAPs. Interestingly, the partitioning step
was correctly invoked in one case, while the other resulted in
an over-partitioning. As such, the 101 VAP-enabled devices
identified by our algorithm were in actuality 100 devices. This
represents the single instance in either test set where we fail to
identify all non-hidden SSID nodes for a given physical device.
As was the case in our first test, we fail to correlate the hidden
SSID-enabled VAPs. For each test we achieve precision of 1.0
and .99 respectively. When allowing for the exception of the
hidden SSIDs, we achieve a recall of 1.0 for both data sets.

C. Hidden SSID Problem
The use of a hidden SSIDs creates two problems in our

community structure-based methodology for VAP correlation
analysis. First as depicted in Figure 6a, when a client transmits
a broadcast probe request, a probe response is not elicited from
any hidden SSIDs configured VAPs. In the case of a directed
probe request, illustrated in Figure 6b, we observe a single
probe response frame issued from the AP of interest. We gain
no insight into the community structure of the physical device
as only the queried SSID associated VAP responds.

Similarly, while not observed within these data sets, imper-
fections in the collection environment where a single probe
response is dropped from a set of probe responses will
inherently lead to a lack of community structure. In this case,
the node itself is missing from the data set entirely.
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D. MAC Address Structure

Initially we assumed that the MAC address allocation
structure of VAPs would follow a consistent method, thereby
allowing for use as a correlation classifier. However, after
evaluating our algorithm’s results we find this not to be
the case, even within a single vendors implementation. The
following example serves to illustrate the complexity of one
vendors VAP MAC address structure. The first octet has had
the locally assigned bit set, the second has been replaced by the
sixth, the third and fifth are swapped, and the fourth remains
constant:

Example 4 (Byte stucture). The following two VAP MAC
addresses are observed with feature sets that meet all require-
ments for similarity yet have different middle four octets:

90:72:40:23:0D:EC
92:EC:0D:23:40:70

Furthermore, the allocation schemes observed within our
dataset (revealed while using our correlation construct) were
surprisingly diverse. Across vendor types, and across a single
manufacturer’s product line we identified 13 unique MAC
address schemes. We posit that our novel correlation method-
ology can be utilized to classify these schemes and organize by
device model. This classification could be used for extending
our methodology in the future.

VII. CONCLUSION

In summary, we have presented a graph theoretic algorithm
for VAP identification. The algorithm took a multi-dimensional
set of data represented by Ĝ and reduced it to one dimension
G via a novel voting map f . Several possible features in
the probe response framework were evaluated for use in the
algorithm where reception time and timestamp were found to
be strong correlative features. Beacon interval was also found
to be useful for edge discrimination as was reception time.
The algorithm was found to be accurate on both small vendor
specific data and large multi-vendor data. A strength of the
algorithm was revealed in that idiosyncratic byte structures
were identified that may have confounded a more traditional
traffic-analysis approach to VAP identification. Our algorithm
has shown how automated large data analysis can be successful
through graph-theoretic methods.
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