
Revisiting AS-Level Graph Reduction
Erik C. Rye

US Naval Academy
Email: rye@usna.edu

Justin P. Rohrer
Naval Postgraduate School
Email: jprohrer@nps.edu

Robert Beverly
Naval Postgraduate School
Email: rbeverly@nps.edu

Abstract—The topological structure of the Internet – the
interconnection of routers and autonomous systems (ASes) –
is large and complex. Frequently it is necessary to evaluate
network protocols and applications on “Internet-like” graphs
in order understand their security, resilience, and performance
properties. A fundamental obstacle to emulation and simulation
is creating realistic Internet-like topologies of reduced order. We
reexamine existing AS graph reduction algorithms and find that
they struggle to capture graph theoretic properties of modern
topologies and topologies obtained from different sources. We
develop a new AS graph reduction method that performs well
across time periods and data sets.

I. INTRODUCTION

The Internet graph is large and complex, even when repre-
sented at a coarse Autonomous System (AS) level [27], [17].
Today, there are approximately ∼40,000 ASes with nuanced
policy dictating their interconnection and data forwarding [10].
Research on the macroscopic behavior of the Internet is
therefore frequently incomplete due to the practical challenges
in obtaining vantage points, ground-truth, and validation. An
alternative is to fully describe and model the Internet’s AS-
level graph. While prior work has e.g., successfully simulated
the AS-level Internet topology to better understand complex
routing decisions [9], SBGP, and RPKI [8], simulation does
not reveal crucial implementation-specific behaviors.

Advances in virtualization and computing power enable an
attractive middle ground between real-world experimentation
and simulation: emulation. For instance, several platforms
virtualize commercial hardware and permit actual network
router and switch operating systems to be run in emulation [5],
[14], [20]. Rather than the time and resource-intensive task of
building physical network topologies, emulated testbeds can
rapidly create (and re-create) complex networks.

Emulation has been used by operators to test configurations
[15], while researchers have employed emulation to investi-
gate route-leak detection, BGP convergence and stable paths
[11], network latency [7], and CDN-ISP collaboration [21].
Unfortunately, the largest emulations reported in the literature
use approximately 1,000 routers [15], whereas the AS-level
topology is an order of magnitude larger.

We re-examine the problem of accurately reducing the size
of a known Internet AS-level graph, while preserving its graph
theoretic properties. In contrast to topology generators, e.g.,
[18], [26], [13], graph sampling removes edges and vertices,
a technique that has been shown to outperform generative
approaches [16]. A typical input to a graph reduction algorithm
is the complete AS-level topology, for instance as inferred via

CAIDA or RouteViews [12], [19]. We make no claims as to
the representativeness of these input topologies, and indeed
prior work has shown them to be incomplete [4].

Our starting point is the algorithms of Krishnamurthy et al.
[16], who focus specifically on AS graph reduction. We re-
examine the quality of the reduced graphs from these existing
algorithms (evaluated on topologies now over a decade old)
on the modern Internet topology. Further, we investigate graph
reduction performance on input topologies obtained from
active probing (CAIDA’s ITDK) [12] versus passive BGP
(Routeviews) [19]. On these data, we find important deviations
in the fidelity of the reduced graphs resulting from these prior
approaches. Based on these findings, we introduce two new
graph reduction algorithms specifically designed for Internet
topology reduction: KDD and KKD. We show that KDD and
KKD better preserve a wider variety of graph properties of
interest for AS topologies than existing techniques.

II. BACKGROUND

Graph generation is well-studied. Constructive models such
as Barabási-Albert, Waxman, Generalized Linear Preference,
and Interactive Growth ([25], [2], [28], [6]) have been imple-
mented ([18], [13], [26]) to generate topologies that mimic
graph properties of the observed Internet. However, prior
analysis suggests that reductive approaches outperform con-
structive models [16]. As such, we focus on graph reduction:
sampling large networks in order to obtain smaller graphs that
retain representative properties of the original graph or match
those of a graph of similar number of vertices, or order.

Significant prior work has also examined graph reduction; a
more comprehensive discussion is contained in [23]. Cem et al.
reduce an AS graph from 2007 using Induced Random Vertex,
Metropolized Random Walk and Random Edge sampling [3].
Whereas Cem examines degree distribution, clustering coeffi-
cient, and path length of a reduced graph compared to a single
input graph, we compare against an unsampled topology of the
same order from a previous snapshot in time. In addition, our
work examines the graph spectra, hop-plot and sorted degree
distributions. Vaquero et al. [24] introduce a Breadth-First
Search (BFS) method for reducing the graph of routers within
a single backbone service provider and evaluate end-to-end
delay between various pairs in the reduced topology to those in
real physical networks. By contrast, in this paper, we examine
far larger AS-level topologies, and are concerned primarily
with accurately representing graph theoretical characteristics
within the reduced graphs.

TABLE I
SUMMARY OF GRAPH SAMPLING METHODS EXPLORED IN THIS PAPER.

Reduction Method Description
CRE (Contraction of a Random Edge) Select a random edge with uniform probability; adjacent nodes are contracted into one.
CRVE (Contraction of a Random Vertex-Edge) Select a random vertex, then a random incident edge. Adjacent nodes contracted.
DRE (Deletion of a Random Edge) A random edge is selected with uniform probability, then deleted from the graph. If

disconnections occur, keep largest connected subgraph.
DRV (Deletion of a Random Vertex) A vertex is selected with uniform probability, then deleted from the graph. If disconnections

occur, keep largest connected subgraph.
DRVE (Deletion of a Random Vertex-Edge) A vertex is selected randomly, then an edge incident to that vertex is selected randomly.

This edge is then deleted. If disconnections occur, keep largest connected subgraph.
DHYB (Deletion Hybrid) DHYB-X chooses between deletion of a random vertex/edge (DRVE) with probability X

and deletion of a random edge (DRE) with probability (1-X)
EBFS (Exploration by Breadth-First Search) A vertex in the graph randomly selected as the root node. Breadth-First Search algorithm is

run until desired number of nodes visited; these nodes used to induce subgraph of original.
EDFS (Exploration by Depth-First Search) A vertex in the graph randomly selected as the root node. Depth-First Search algorithm is

run until desired number of nodes visited; these nodes used to induce subgraph of original.

KDD (k-core decomposition – DRVE – DRE) Obtain k-core of the initial graph for largest k value such that the k-core contains more
than n vertices. Remove vertices by DRVE from this k-core until n vertices remain, then
delete random edges via DRE until m edges are present. See §IV-1.

KKD (k-core decomposition – k-deletion – DRE) Obtain k-core of the initial graph for largest k value such that the k-core contains more
than n vertices. Remove vertices of degree k from this k-core until n vertices remain, then
delete random edges via DRE until m edges are present. See §IV-2.

Krishnamurthy performed some of the earliest work on
reducing the entire Internet AS graph to a size suitable for
emulation [16] rather than sampling networks in general, or
sampling a particular portion of the Internet. In §V we re-
examine this work by applying the Krishnamurthy’s algorithms
to modern AS topologies obtained from different sources.

III. METHODOLOGY

Our methodology is four-fold: i) implement the reduction
techniques of [16]; ii) obtain topologies from different time
periods and sources; iii) re-evaluate the reduction techniques
in [16]; and iv) develop improved reduction algorithms.

Krishnamurthy [16] explores the first eight graph reduction
methods summarized in in Table I. These can broadly be clas-
sified into three different categories: contraction, deletion, and
exploration. Although we made contact with an author of [16],
we were unable to obtain their reduction implementation.
We therefore re-implemented their reduction algorithms and
validated against the same input topologies as in the original
work. As shown in §V, our results using the same data are
similar to their findings, but not identical.

We consider AS-level topology data from two sources
over two timeframes (Table II). RV1 and RV2 are snapshots
of AS-level graphs constructed from the Border Gateway
Protocol (BGP) paths passively observed by Routeviews [19].
RV1 is the identical dataset as used in [16]. CAIDA1 and
CAIDA2 also consist of AS-level Internet-wide graphs, but are
constructed using active traceroute probes [12]. By examining
these varied data, we seek to test whether prior work overfits
to particular time periods or data sources. While neither of
these topologies is complete or necessarily correct [4], they
represent the state-of-the-art publicly available topologies.

We define a source-period as a timeframe over which a
chronologically later (and, hence, larger) topology is reduced
to a smaller graph. Such a reduction permits evaluation of
the representativeness of the reduced graph by comparing

its properties to the smaller, earlier topology (as opposed to
artificially comparing against properties of the input topology).
We study four source-periods - RouteViews 2001-1998, Cen-
ter for Applied Internet Data Analysis (CAIDA) 2001-1998,
RouteViews 2014-1998, and CAIDA 2014-1998. We refer to
the initial instance as the chronologically most recent topology
for each source-period (May 2001 or December 2014). We
define the reduction endpoint as the number of nodes in the
earliest topology for each source-period (in our work, these
are instances from January 1998).

In order to recreate and validate the work of [16], we
examine RV1 and reduce the AS graph from 7 May 2001 at
1800 to a graph on the order of the 24 January 1998 instance.
To determine whether the reduction mechanisms remain valid,
we reduce an initial instance of RV2 from 1 December 2014
to a graph with order of the snapshot from 1 January 1998 (a
span of almost 17 years and a node reduction of 93%).

We note that the ability of the reduction methods to maintain
the desired graph theoretic properties is often proportional to
the degree of reduction. While we start with an initial graph
and reduce to an endpoint graph, the algorithms are iterative
and produce intermediate graphs. Thus, we create chronolog-
ically intermediate graphs in order to compare our reduction
methods to the actual evolution of snapshots observed in
our datasets (which mirror the evolution of the Internet). In
general, we have selected our intermediate graphs six months
apart for the reductions from 2014 to 1998, and in four month
intervals for the reductions from 2001 to 1998.

We evaluate a reduced graph against an unsampled snapshot
of the same order. For example, if we reduce the RV2 graph
from December, 2014 to a new graph with 22,640 nodes
(a 51% reduction), we find a historic Routeviews graph in
our dataset of the same order 22,640 (in this example 1
June, 2006). For our first metric, we have chosen the sets of
intermediate graphs to compare against as described above; for
the final three metrics, we compare only against the earliest

TABLE II
DATASETS EXAMINED

Dataset Source Construction Timeframe Initial Order Initial Size End Order End Size % Reduction
RV1 Routeviews Observed AS PATH 01/1998 - 05/2001 10,966 22,536 3,291 5,784 72.5
RV2 Routeviews Observed AS PATH 01/1998 - 12/2014 49,185 107,517 3,211 5,611 93.5
CAIDA1 CAIDA ITDK Traceroute 01/1998 - 05/2001 11,045 24,484 3,233 5,773 70.7
CAIDA2 CAIDA ITDK Traceroute 01/1998 - 12/2014 46,177 177,391 3,233 5,773 93.0

historical Internet instance from January 1998, the reduction
endpoint. In this fashion, we always compare the reduced
graph to a topological snapshot when it was of the order we
are targeting. The graph metrics we use are as follows:

1) Average degree.
2) Spectral analysis of the normalized adjacency matrices.

We (as in [16]) plot the 100 largest eigenvalues of these
matrices. The magnitude of these eigenvalues provides
an approximation of the degree of clustering in the 100
largest clusters within the graph.

3) Hop-plot, or cumulative distribution of vertex-pairs ver-
sus distance between the pairs in hops.

4) Sorted degree-distribution.
In order to judge which graph reduction method is most suc-

cessful in creating a graph matching the properties of earlier
topology snapshots, we use the Mean Absolute Error (MAE)
between the reduction method data point and the correspond-
ing data point of the target topology: MAE = 1

n

∑
i

|mi− Ii|
where n is the total number of points compared, mi is the
reduction method data point, and Ii is the target graph’s value.
MAE measures the cumulative distance between the data of
the target and the data obtained in our sampled graph, without
accounting for the direction in which the error was realized
(under or over). Further, because we find error values both less
than and greater than 1, MAE does not under-emphasize the
former or amplify the latter. Our results represent the average
of 50 trials with different seeds.

IV. k-CORE REDUCTION

As we will show in §V, the best of the reduction methods, as
determined by the fidelity to which they capture the endpoint’s
metrics, varies with the input AS graph considered. While
Krishnamurthy et al. find that DHYB-0.8 performs best, we
find that this value of 0.8 for a hybrid ratio overfits to the data
– and that the reduction performance significantly depends on
choosing a hybrid ratio appropriate for the input graph.

Motivated by the sensitivity of these algorithms to param-
eterization, we seek improved algorithms producing faithful
reductions across our RV1, RV2, CAIDA1, and CAIDA2 (Ta-
ble II) datasets. To this end, we draw from prior work finding
k-cores of AS-level Internet graphs to be self-similar [1] to
create new reduction algorithms exploiting this self-similarity.

Let degH(v) be the degree of vertex v in subgraph H . For
graph G with vertex set V (G), the k-core of G is the maximal
connected subgraph H of G such that: degH(v) ≥ k ∀v ∈
V (H). Thus, a graph k-core is a connected subgraph in which
all nodes have degree at least k; if multiple such subgraphs
exist, the k-core is the largest subgraph by number of nodes.
For G with n nodes, the complexity of finding its k-core is

O(n), as it can be obtained by repeatedly deleting nodes of
lowest degree (and their incident edges). We create and analyze
two k-core-based methods: 1) k-core decomposition – DRVE
– DRE (KDD); and 2) k-core decomposition – k-deletion –
DRE (KKD).

1) KDD: KDD takes as input an initial AS graph, and a
target number of both vertices and edges. Beginning with the
input graph, we compute successive k-cores until the (k+1)st-
core contains fewer than the target number of vertices. We
retain the smallest k-core (largest k) with more nodes than the
target, and proceed to reduce this k-core using DRVE until
reaching the desired vertex count. Last, we remove random
edges if they do not partition the graph until we reach the
target number of edges. The largest k for our purposes is k = 2
in both RV1 and CAIDA1; k = 5 for RV2 and k = 8 for
CAIDA2.

The force behind the development of KDD stems from a
desire to capture the most topologically important, highest-
degree AS in the Internet graph, while removing less signif-
icant nodes based on degree. While degree is an imperfect
indicator of graph structure and node importance, the highest-
degree nodes most likely take part in the largest clusters within
the graph, a desirable property to maintain. Further, high-
degree ASes are more likely to have existed in earlier topology
snapshots graphs than lower-degree nodes, against which we
ultimately compare our reduced graphs.

2) KKD: As with KDD, we compute successive k-cores
until the (k+1)st-core contains fewer than the target number of
vertices. We reduce the resulting k-core by randomly removing
vertices with degree of k until reaching the target number of
vertices. Last, we remove random edges if they do not partition
the graph until we reach the target number of edges.

The motivation behind KKD is to understand the effect of
different vertex removal methods after obtaining the smallest
k-core. When the smallest k-core has been identified, the
initial minimum degree of nodes within the graph is equal
to k, though it may grow smaller as vertices of degree k are
removed. While in our experiments removing nodes of degree
exactly k is adequate to reach our target, this may not be
possible in general.

V. RESULTS

A. Reexamination of Prior Work

We reexamine the results of [16] when reducing RV1.
Our goal is to both validate these prior findings and our
implementation of their algorithms (publicly available [22]).
Our results largely mirror those of the prior work, with some
minor discrepancies that we summarize here (full results and
analysis available in [23].

We first examine average degree as compared to the target
(earliest) AS topology instance. The deletion-hybrid (DHYB)-
0.7 method produced an endpoint graph with the closest
average degree, while [16] found DHYB-0.8 to be best. Al-
though there is only a 0.247 average degree difference between
DHYB-0.7 and 0.8, DHYB-0.7 is not mentioned in [16] while
they find DHYB-0.5 and 0.6 to be secondary candidates.
DHYB methods monotonically increase in average degree,
necessarily including DHYB-0.7 among the best performers.

The hop-plot analysis finds a similar discrepancy. We
find that DHYB-0.7 best matches the target topology hop-
plot, while [16] finds DHYB-0.8 performing best (MAE of
0.00606), with DHYB-0.5 and 0.6 following. We find DHYB-
0.7 has an MAE of 0.00261, while the second best method,
KDD produces an MAE of 0.00442. KKD produces the most
representative sampled graph when considering the degree dis-
tribution, with an MAE of 0.469. Of the reduction algorithms
studied in [16], DHYB-0.7 again most closely matches the
target degree distribution with a MAE of 0.604. Only spectral
analysis confirms the exact conclusions of [16]. We find that
DHYB-0.8 follows the Internet eigenvalue plot closest with a
0.00483 MAE. KDD is second best with an MAE of 0.0120.

Overall, our results vary slightly from those of the prior
work when examining RV1. The differences are likely at-
tributable to exploring more of the algorithm parameter space.

B. Modern Topologies

We next apply these methods to the more modern Route-
views data in RV2. In this source-period, the most recent
instance is 1 December 2014 – an inferred AS-level graph of
order 49,185 and edge-set cardinality 107,517, for an average
degree of 4.37. The reduction endpoint is the order of the
initial RV2 graph from 1 January 1998 (3,211 vertices and
5,611 edges, which is a node reduction of approximately
93.5%). We further consider intermediate instances of RV2
evenly distributed on the first of June and first of December.

Figure 1(a) shows average degree as a function of percent
reduction for the various methods. The solid black line (labeled
“Internet”) corresponds to the metric values of a chrono-
logically earlier and smaller instance taken unsampled from
the same data source (RV or CAIDA). We thus evaluate the
reduced graph against a true historic instance of the same size.

None of the non-DHYB methods approximate the target
average degree curve well. DRVE is the best-performing non-
DHYB method, but deviates from the average degree of the
target after the 30% reduction mark and rapidly increases to
the reduction endpoint. The DHYB reduction methods fare
better, with DHYB-0.6 matching the target average degree
most closely; the mean average degree of the 50 random
trials is 3.56, which compares favorably to the 1 January
1998 Internet instance average degree of 3.49. DHYB-0.7
follows the target curve throughout much of the reduction.
An inflection point is reached at about 70%, at which point
DHYB-0.7 increases in average degree to around 4.4.

The spectral analysis of RV2 in Figure 2(a) reveals DHYB-
0.6 performing best (MAE of 0.00707). Our k-core methods

also perform well, with KDD obtaining an MAE of 0.00843
and KKD an MAE of 0.0134. Interestingly, DHYB-0.8, ob-
served to perform best in [16], is seventh of the 18 algorithms
with an MAE of 0.0762. DHYB-0.6 and KDD follow the
target spectra well throughout all eigenvalues, but particularly
throughout the lowest ordered (largest clusters). As seen in
Figure 2(a) we also observe the tendency of DHYB reduction
methods’ normalized eigenvalues to monotonically increase
according to their probability value.

The hop-plot results for RV2 given in Figure 2(b) produce
a wide range of curves. Using contraction of a random edge
(CRE), for example, results in a most-reduced graph in which
approximately 85% of vertices are within 2 hops of each
other. Conversely, in DRE, a comparable fraction of vertices
are within 7 hops of each other. Several methods compare
favorably to the target hop-plot at various hops; exploration
by Depth-First Search (EDFS) most closely follows the target
curve (MAE of 0.00366). DHYB-0.7 and 0.6 model the target
fairly well with MAE of 0.00520 and 0.0102 respectively.
At some hop values, we notice significant deviations from
the target. For example, hop = 3 for DHYB-0.6 exhibits a
difference of ∼10% of vertex pairs, indicating that the tail of
the CDF is longer compared to target graph.

Finally, Figure 2(c) examines the degree distribution of the
reduced graphs. CRE follows the target degree distribution
poorly in both RV2 and RV1 as it tends to create one
high degree vertex. Methods that approximate the highest-
degree vertex tend to overestimate the degree throughout the
remaining vertices, while the rest of methods follow the target
well throughout the middle and low ranked vertices, but fail
to approximate the highest-degree vertex by several hundred.
In particular, contraction of a random vertex/edge (CRVE) has
a mean highest-degree vertex of ∼631, compared to 640 for
the target instance. However, CRVE overestimates the degree
of the remaining vertices. KKD, KDD and DHYB-0.5, are the
three best methods with MAE of 0.688, 0.706, and 0.743.

C. Different Topologies

1) CAIDA 2001-1998: CAIDA1 covers the same source-
period as RV1, thereby providing insight into the sensitivity
of the results to the source input topology. Encouragingly, we
find largely consistent results, with different parameterizations
of the DHYB algorithm performing best.

For average degree, we find DHYB-0.6 most closely match-
ing the target graph, as compared to DHYB-0.7 for RV1.
Spectral analysis of CAIDA1 reductions show DHYB-0.7 to
perform best (MAE of 0.00367) as compared to DHYB-0.8
for RV1. Hop-plot analysis finds KDD and DHYB-0.7 to
best fit the target (MAE of 0.00359 and 0.00405); DHYB-0.7
performed best in RV1. Finally, KKD most closely models the
CAIDA1 target degree distribution (MAE of 0.486).

2) CAIDA 2014-1998: Figure 1(b) shows that the average
degree of the initial instance is approximately eight, or twice
that of the comparable Routeviews topology. This degree dif-
ference imparts surprising differences in the various algorithm

0 20 40 60 80
Percent Reduced

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

A
v
e
ra

g
e
 D

e
g
re

e

CRE

DHYB-0.5

DHYB-0.6

DHYB-0.7

DRV

DRVE

EBFS Internet

(a) Routeviews 2014-1998

0 20 40 60 80
Percent Reduced

2

4

6

8

10

12

14

A
v
e
ra

g
e
 D

e
g
re

e

CRE

DHYB-0.1

DHYB-0.2

DHYB-0.3

DRV

DRVE

EBFS Internet

(b) CAIDA 2014-1998
Fig. 1. Average degree

20 40 60 80 100
Order

0.75

0.80

0.85

0.90

0.95

1.00

E
ig

e
n
v
a
lu

e

DHYB-0.5

DHYB-0.6

DHYB-0.7

DRE

DRV

DRVE

EBFS

Internet

KDD

KKD

(a) Spectra

1 2 3 4 5 6 7 8 9 10
Hops

0.0

0.2

0.4

0.6

0.8

1.0

Fr
a
ct

io
n
 o

f
v
e
rt

e
x
 p

a
ir

s

CRE

DHYB-0.5

DHYB-0.6

DHYB-0.7

DRE

EDFS

Internet

KDD

KKD

(b) Hop-plot

100 101 102 103 104

Degree

100

101

102

103

104

R
a
n
k

CRE

CRVE

DHYB-0.5

DHYB-0.6

DHYB-0.7

DRV

EBFS

Internet

KDD

KKD

(c) Degree distribution
Fig. 2. RouteViews 2014-1998

20 40 60 80 100
Order

0.75

0.80

0.85

0.90

0.95

1.00

E
ig

e
n
v
a
lu

e

CRE

DHYB-0.1

DHYB-0.2

DHYB-0.3

DRV

DRVE

Internet

KDD

KKD

(a) Spectra

1 2 3 4 5 6 7 8 9 10
Hops

0.0

0.2

0.4

0.6

0.8

1.0

Fr
a
ct

io
n
 o

f
v
e
rt

e
x
 p

a
ir

s

CRE

DHYB-0.1

DHYB-0.2

DHYB-0.3

DRE

EDFS

Internet

KDD

KKD

(b) Hop-plot

100 101 102 103 104

Degree

100

101

102

103

104

R
a
n
k

CRE

DHYB-0.1

DHYB-0.2

DHYB-0.3

DRV

DRVE

EBFS

Internet

KDD

KKD

(c) Degree distribution
Fig. 3. CAIDA 2014-1998

performance. DHYB-0.1 best captures average degree, fol-
lowed closely by DHYB-0.2 and deletion of a random vertex
(DRV). These reduction methods did not perform well with
the previous RV1, RV2, and CAIDA1 datasets; the comparable
RV2 source-period average degree was best approximated by
DHYB-0.6, and no non-DHYB methods fared well. DHYB-
0.1 produces an average degree of 0.509 below the earliest
historical target, while DHYB-0.2 and DRV exhibit average
degrees differences of 0.486 and 0.405 above.

Spectral analysis further highlights the difference among
data source. As seen in Figure 3(a), DHYB-0.2 best reproduces
the spectra on CAIDA2 (MAE of 0.00514), whereas the best
for RV2 is DHYB-0.6, a 40% difference in hybrid probability.
Further, the spectral analysis top performer in CAIDA1 is
DHYB-0.7. KDD and KKD are the second and third best
algorithms (MAE of 0.00650 and 0.0102).

The hop-plot metric, shown in Figure 3(b), similarly finds
the DHYB techniques with low hybrid ratios performing best.
DHYB-0.3 most closely matches the target (MAE of 0.00877).

While DHYB-0.7 consistently performed well for RV1, RV2,
and CAIDA1, here it ranks eleventh of the 18 reduction
algorithms studied (MAE of 0.0519). The degree distribution
plot for CAIDA2 is given in Figure 3(c). DHYB-0.1 best
captures this metric, whereas DHYB-0.7 is the best of the
non-k-core algorithms for RV1 and DHYB-0.5 is the best non-
k-core reduction for RV2 and CAIDA1.

D. k-core

Among the metrics and datasets we consider, our k-core
algorithms do not always produce the best fit to the target
metric; however, they are regularly among the top three. Thus,
while the other algorithms we consider are relatively sensitive
to the input data, the k-core algorithms perform consistently
well, suggesting that our k-core algorithms generalize well to
Internet-like graphs. Table III summarizes our results.

We do not perform average degree comparison for KDD
and KDD as they take a target edge number as input and
reach the target average degree precisely. We observe that the

spectra of graphs from KDD outperform KKD; the spectra
of KKD graphs are higher on average than those of both the
target and KDD. This is likely due to the removal of only the
k-degree vertices in the second step of KKD which preserves
the largest, most connected clusters. KDD performs nearly as
well as the best performing DHYB reduction methods, despite
the fact that these have hybrid probabilities differing by 40%,
indicating that KDD well maintains spectral properties of the
target even through a high percentage of reduction.

Figures 2(c) and 3(c) show the degree histograms of KDD
and KKD. In both RV2 and CAIDA2, these methods produce
highest-degree vertices with degrees of several hundred less
than the target, while we observe above-average performance
from the 100 to 1 vertex degree range. KKD models the target
better than KDD throughout much of the degree range; KDD
tends to produce a slightly higher degree high-degree vertex,
however. Against all 18 reduction methods examined, KKD is
the best method to capture the degree histogram in three of the
four source-periods, and is one of the top four for CAIDA2.

VI. CONCLUSIONS

We first re-examine and validate the graph reduction work of
[16], and then examine the soundness of the results given mod-
ern topologies obtained from different sources. We find that
a single probability parameter of the recommended algorithm
(DHYB) from [16] can result in poor reductions depending on
the input topology. Given this finding, we developed two novel
k-core reduction algorithms to preserve the most central nodes
and important graph structure. Across four different topologies
our k-core reduction algorithms consistently perform well by
accurately capturing spectral properties, hop-plot distribution,
and degree distribution. Our results suggest that the perfor-
mance of KDD and KKD are less sensitive to the input graph.

While our k-core decomposition methods show promise
across varied sources and periods, there are several areas that
warrant further research. In order to strengthen our findings
that k-core reduction methods outperform other graph sam-
pling algorithms, a rigorous examination of these methodolo-
gies should be undertaken to determine the mathematical un-
derpinnings behind their metric-preserving properties. Because
KDD and KKD require a target edge count, an enhancement
to the algorithm could optimize over the number of edges to
identify an edge count that best matches the target metrics.
We leave as future work an evaluation of k-core sampling to
reduce IP and router-level topologies, as well as non-Internet
graphs and Internet-like graphs created constructively.

ACKNOWLEDGMENTS

This work supported in part by NSF CNS-1213155 and
DHS Cyber Security N66001-2250-58231. Views and conclu-
sions are those of the authors and should not be interpreted as
representing the official policies of the U.S. government.

REFERENCES

[1] J. I. Alvarez-Hamelin, L. Dall’Asta, A. Barrat, and A. Vespignani. k-
core Decomposition of Internet Graphs: Hierarchies, Self-Similarity and
Measurement Biases. arXiv preprint cs/0511007, 2005.

TABLE III
SUMMARY OF BEST METHODS PER SOURCE-PERIOD CONSIDERED

RV1 RV2 CAIDA1 CAIDA2
Avg. Deg DHYB-0.7 DHYB-0.6 DHYB-0.6 DHYB-0.1

Spectral
DHYB-0.8
KDD
DHYB-0.7

DHYB-0.6
KDD
KKD

DHYB-0.7
DHYB-0.8
DHYB-0.6

DHYB-0.2
KDD
KKD

Hop Plot
DHYB-0.7
KDD
DHYB-0.8

EDFS
DHYB-0.7
DHYB-0.6

KDD
DHYB-0.7
DHYB-0.6

DHYB-0.3
DRV
EDFS

Deg. Dist.
KKD
DHYB-0.7
DHYB-0.6

KKD
KDD
DHYB-0.5

KKD
DHYB-0.5
DHYB-0.4

DHYB-0.1
DRE
DRV

[2] T. Bu and D. Towsley. On Distinguishing between Internet Power Law
Topology Generators. In INFOCOM. IEEE, 2002.

[3] E. Cem, M. E. Tozal, and K. Sarac. Impact of Sampling Design in
Estimation of Graph Characteristics. In IPCCC. IEEE, 2013.

[4] N. Chatzis, G. Smaragdakis, J. Böttger, T. Krenc, and A. Feldmann. On
the Benefits of Using a Large IXP as an Internet Vantage Point. In ACM
IMC, 2013.

[5] Christophe Fillot. Dynamips, July 2015. https://github.com/GNS3/
dynamips/.

[6] C. X. A. Dimitropoulos, G. F. Riley, D. Krioukov, and R. Sundaram.
Towards a topology generator modeling as relationships. 2005.

[7] M. Garetto and D. Towsley. Modeling, Simulation and Measurements of
Queuing Delay Under Long-Tail Internet Traffic. SIGMETRICS, 2003.

[8] P. Gill, M. Schapira, and S. Goldberg. Let the Market Drive Deployment:
A Strategy for Transitioning to BGP Security. In SIGCOMM CCR, 2011.

[9] P. Gill, M. Schapira, and S. Goldberg. Modeling on Quicksand:
Dealing with the Scarcity of Ground Truth in Interdomain Routing Data.
SIGCOMM CCR, 2012.

[10] V. Giotsas, M. Luckie, B. Huffaker, and K. Claffy. Inferring Complex
AS Relationships. In ACM IMC, Nov. 2014.

[11] T. G. Griffin, F. B. Shepherd, and G. Wilfong. The Stable Paths Problem
and Interdomain Routing. IEEE TON, 2002.

[12] Y. Hyun and k. claffy. The CAIDA Macroscopic Topology Data, 2014.
http://www.caida.org/projects/macroscopic/.

[13] C. Jin, Q. Chen, and S. Jamin. Inet: Internet topology generator. 2000.
[14] Juniper Networks. Junosphere User Guide, 2015.
[15] S. Knight, H. Nguyen, O. Maennel, I. Phillips, N. Falkner, R. Bush,

and M. Roughan. An Automated System for Emulated Network
Experimentation. In CoNEXT. ACM, 2013.

[16] V. Krishnamurthy, M. Faloutsos, M. Chrobak, J.-H. Cui, L. Lao, and
A. G. Percus. Sampling large internet topologies for simulation purposes.
Computer Networks, 2007.

[17] P. Mahadevan, D. Krioukov, M. Fomenkov, X. Dimitropoulos, k. c.
claffy, and A. Vahdat. The Internet AS-level Topology: Three Data
Sources and One Definitive Metric. SIGCOMM CCR, 2006.

[18] A. Medina, A. Lakhina, I. Matta, and J. Byers. BRITE: An Approach
to Universal Topology Generation. In MASCOTS. IEEE, 2001.

[19] D. Meyer. RouteViews, 2014. http://www.routeviews.org.
[20] J. Obstfeld, S. Knight, E. Kern, Q. S. Wang, T. Bryan, and D. Bourque.

VIRL: the Virtual Internet Routing Lab. In SIGCOMM. ACM, 2014.
[21] I. Poese, B. Frank, S. Knight, N. Semmler, and G. Smaragdakis. PaDIS

Emulator: An Emulator to Evaluate CDN-ISP Collaboration. In ACM
SIGCOMM, 2012.

[22] E. Rye. Python graph reduction implementations, 2015. https://github.
com/cmand/graphreduce.

[23] E. Rye and J. P. Rohrer. Graph Reduction for Emulated Network
Experimentation. Technical Report CS-15-001, NPS, 2015.

[24] L. M. Vaquero, S. S. Lor, D. Audsin, P. Murray, and N. Wainwright.
Sampling ISP Backbone Topologies. Comm. Letters, IEEE, 2012.

[25] S.-H. Yook, H. Jeong, and A.-L. Barabási. Modeling the Internet’s
Large-Scale Topology. National Academy of Sciences, 2002.

[26] E. Zegura, K. Calvert, and S. Bhattarcharjee. How to Model an
Internetwork. In INFOCOM. IEEE, 1996.

[27] B. Zhang, R. Liu, D. Massey, and L. Zhang. Collecting the Internet
AS-level Topology. SIGCOMM CCR, 2005.

[28] S. Zhou and R. J. Mondragon. Towards Modelling the Internet Topology:
The Interactive Growth Model. Teletraffic Sci. and Eng., 2003.

