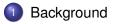
In the IP of the Beholder: Strategies for Active IPv6 Topology Discovery

Robert Beverly*, Ram Durairajan†, David Plonka‡, Justin Rohrer*

*Naval Postgraduate School [†]University of Oregon [‡]Akamai Technologies

October 31, 2018

ACM Internet Measurement Conference 2018



(NPS/UOregon/Akamai)

Active IPv6 Topology Discovery

IMC 2018 1/27

Outline

- 2 What to Probe
- 3 How to Probe
- 4 Results

IMC 2018 2/27

What We Did

Performed large-scale topological survey of the Internet using IPv6

- Evaluated ability of IPv6 hitlists to produce targets
- Utilized a new traceroute technique
- Analyzed results (1.4M discovered router addresses):
 - IPv6 subnetting
 - Privacy implications

How to map the router-level IPv6 Internet?

Active IPv6 Topology Discovery

IMC 2018 3/27

What We Did

Performed large-scale topological survey of the Internet using IPv6

- Evaluated ability of IPv6 hitlists to produce targets
- Utilized a new traceroute technique
- Analyzed results (1.4M discovered router addresses):
 - IPv6 subnetting
 - Privacy implications

How to map the router-level IPv6 Internet?

Active IPv6 Topology Discovery

IMC 2018 3/27

What We Did

Performed large-scale topological survey of the Internet using IPv6

- Evaluated ability of IPv6 hitlists to produce targets
- Utilized a new traceroute technique
- Analyzed results (1.4M discovered router addresses):
 - IPv6 subnetting
 - Privacy implications

How to map the router-level IPv6 Internet?

IMC 2018 3/27

But wait, decades of experience with active topology mapping!

IPv6-Specific Challenges:

- Massive address space that is sparsely populated \rightarrow *What* to probe?
- Mandated ICMPv6 rate limiting \rightarrow How to send probes?

This work seeks to make progress against both challenges, and increase coverage/fidelity of IPv6 Internet router topologies.

IMC 2018 4/27

But wait, decades of experience with active topology mapping!

IPv6-Specific Challenges:

- Massive address space that is sparsely populated → What to probe?
- Mandated ICMPv6 rate limiting \rightarrow How to send probes?

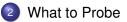
This work seeks to make progress against both challenges, and increase coverage/fidelity of IPv6 Internet router topologies.

IMC 2018 4/27

But wait, decades of experience with active topology mapping!

IPv6-Specific Challenges:

- Massive address space that is sparsely populated → What to probe?
- Solution Mandated ICMPv6 rate limiting \rightarrow *How* to send probes?


This work seeks to make progress against both challenges, and increase coverage/fidelity of IPv6 Internet router topologies.

IMC 2018 4/27

Outline

3 How to Probe

IMC 2018 5/27

State-of-the-art:

- CAIDA (Ark) and RIPE (Atlas) continually collect IPv6 topologies via active probing
- Technique and tools of these production systems mirror IPv4
 - For each IPv6 prefix in global BGP table,
 - sequentially traceroute to:
 - ::1 in prefix
 - random address in prefix

IMC 2018 6/27

Question:

Current production IPv6 active topology mapping systems probe an address in each globally advertised prefix. While this strategy provides breadth, does it miss subnetting and other topological structure?

Hitlists:

• We compare this approach to using existing collections of known IPv6 hosts, or *hitlists* as targets

IMC 2018 7/27

Question:

Current production IPv6 active topology mapping systems probe an address in each globally advertised prefix. While this strategy provides breadth, does it miss subnetting and other topological structure?

Hitlists:

 We compare this approach to using existing collections of known IPv6 hosts, or *hitlists* as targets

Name	Method	Date	Addrs
CAIDA	BGP-derived	2018/05/09	105.2k
DNSDB	Passive DNS	2018/02/15 - 04/28	5.4M
Fiebig	 Lots of recent 	2018/03/27	11.7M
FDNS	work on	2018/04/27	24.8M
CDN Clients	developing /	2018/02/18 - 03/03	N/A
6gen	gathering IPv6	2018/03/13	4.9M
TUM*	hitlists	varies	5.6M
Random	Random Routed	2018/05/23	26.5M
Combined	Join Sets	varies	50.8M

IMC 2018 8/27

Name	Method	Date	Addrs
CAIDA	BGP-derived	Many IPv6 Hitlists	
DNSDB	Passive DNS	• "CAIDA" (BGP) is	}
Fiebig	Reverse DNS	baseline for today	
FDNS	Fwd. DNS	systems	
CDN Clients	kIP anonymization	• "Random" is base	eline
6gen	Generative	for unguided prot	
TUM*	Collection		
Random	Random Routed	 Wide variety of methods 	
Combined	Join Sets		1

IMC 2018 8/27

Name	Method	Date	Addrs
CAIDA	BGP-deri	Many IPv6 Hitlists	105.2k
DNSDB	Passive D	 Composition varies 	5.4M
Fiebig	Reverse D	widely	11.7M
FDNS	Fwd. DN	 Primarily focused on 	24.8M
CDN Clients	<i>k</i> IP anonymi	end hosts	N/A
6gen	Generati	ullet $ ightarrow$ Targets in some	4.9M
TUM*	Collectic	hitlists concentrated in	5.6M
Random	Random Ro	small number of	26.5M
Combined	Join Se	prefixes / ASes	50.8M

IMC 2018 8/27

Name	Methoo		Date	Addrs
CAIDA	BGP-deri	Many IPv6	HITIISTS	105.2k
DNSDB	Passive D		osition varies	5.4M
Fiebig	Reverse [widely		11.7M
FDNS	Fwd. DN		rily focused on	24.8M
CDN Clients	<i>k</i> IP anonymi	end ho	osts	N/A
6gen	Generati	• \rightarrow Tar	gets in some	4.9M
TUM*	Collectic	hitlists	concentrated in	5.6M
Random	Random Ro	small ı	number of	26.5M
Combined	Join Se	prefixe	es / ASes	50.8M

How can hitlists inform active IPv6 topology mapping?

We develop a generalized method for generating targets from "seeds"

(NPS/UOregon/Akamai)

Active IPv6 Topology Discovery

IMC 2018 8/27

(I) < (II) <

Target Generation

2607:5300::1029 2607:5300::109f 2607:5300::102a 2a07:18e8:4005:80b:e3ae::200e 2a07:18e8:4005:80b:87e8::400a

Begin with seeds: hitlist addresses

(NPS/UOregon/Akamai)

Active IPv6 Topology Discovery

IMC 2018 9/27

2607:5300::1029 2607:5300::109f 2607:5300::102a

2

z64

2607:5300::/64

2a07.18e8.4005.80b.e3ae..200e 2a07:18e8:4005:80b::/64 2a07:18e8:4005:80b:87e8::400a

zn aggregation: Group addresses into prefixes of length n

(NPS/UOregon/Akamai)

Active IPv6 Topology Discovery

IMC 2018 9/27

Q: What aggregation granularity?

zn	Packets	Other ICMPv6	Router	Evaluate parameter impact:
			Addrs	 Packets (cost)
/40	1.4M	17.5k	27.0k	 Router addresses
/48	3.6M	105.8k	45.5k	discovered (benefit)
/56	6.1M	194.8k	60.5k	 Collateral impact as
/64	11.8M	486.8k	85.5k	non-TTL exceeded
				responses (cost)

(NPS/UOregon/Akamai)

Active IPv6 Topology Discovery

IMC 2018 10/27

Q: What aggregation granularity?

zn	Packets	Other ICMPv6	Router	Evaluate parameter impact:
			Addrs	/64 has highest cost,
/40	1.4M	17.5k	27.0k	but most benefit
/48	3.6M	105.8k	45.5k	 /48 strikes a balance
/56	6.1M	194.8k	60.5k	
/64	11.8M	486.8k	85.5k	 We perform full probing with both z64 and z48
				with both 204 and 240

(NPS/UOregon/Akamai)

Active IPv6 Topology Discovery

IMC 2018 10/27

2607:5300::1029 2607:5300::109f 2607:5300::102a

2a07:18e8:4005:80b:e3ae::200e

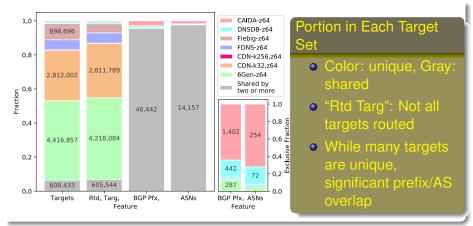
2a07:18e8:4005:80b::/64

Begin with seeds: hitlist addresses

Zn aggregation: Group addresses into prefixes of length n

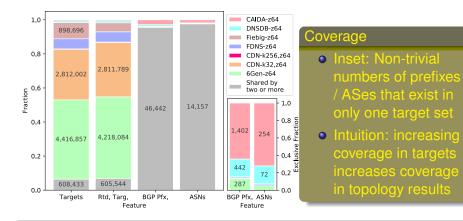
2607:5300::/64

IMC 2018 11/27


- Begin with <u>seeds</u>: hitlist addresses
- In aggregation: Group addresses into prefixes of length n
- Targets are synthesized with interface identifier

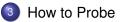
In this example, 5 seed addresses are used to generate 2 targets

IMC 2018 12/27


Q: How do Target Sets Compare?

IMC 2018 13/27

Q: How do Target Sets Compare?



IMC 2018 13/27

Outline

2 What to Probe

(NPS/UOregon/Akamai)

Active IPv6 Topology Discovery

IMC 2018 14/27

Strategies for increasing coverage

- Select better destinations (hitlists)
- Probe more destinations \rightarrow probe faster

Probing faster:

- RFC4443, §2.1.1: "an IPv6 node MUST limit the rate of ICMPv6 error messages it originates"
- Implemented with a token bucket

IMC 2018 15/27

Background

State-of-the-art

Production: e.g., CAIDA and RIPE

- "Sequential" (i.e. TTL=1,2,...)
- Limited parallelism (i.e. waiting for responses, window of destinations)
- Probing faster can be self-defeating: triggers more rate-limiting

IMC 2018 16/27

Background

State-of-the-art

Production: e.g., CAIDA and RIPE

- "Sequential" (i.e. TTL=1,2,...)
- Limited parallelism (i.e. waiting for responses, window of destinations)
- Probing faster can be self-defeating: triggers more rate-limiting

Question:

How to probe in IPv6 to minimize effect of rate-limiting, while maintaining complete probing?

IMC 2018 16/27

Yarrp: "Yelling at Random Routers Progressively" (IMC2016)

- Uses a block cipher to **randomly permute** the $\langle IP, TTL \rangle$ domain
- Is stateless, recovering necessary information from replies
- By randomly spreading probes in time/space, permits **fast** Internet-scale active topology probing

Yarrp6

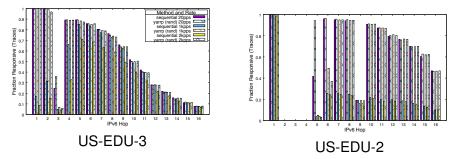
- We extend Yarrp to support IPv6
- And add IPv6-specific enhancements
- Hypothesis: Yarrp-mapping of the IPv6 Internet will suffer less rate-limiting, even at higher probing rates

IMC 2018 17/27

Yarrp6

Yarrp: "Yelling at Random Routers Progressively" (IMC2016)

- Uses a block cipher to randomly permute the (IP, TTL) domain
- Is stateless, recovering necessary information from replies •
- By randomly spreading probes in time/space, permits fast Internet-scale active topology probing


Yarrp6

- We extend Yarrp to support IPv6
- And add IPv6-specific enhancements
- Hypothesis: Yarrp-mapping of the IPv6 Internet will suffer less rate-limiting, even at higher probing rates

IMC 2018 17/27

Comparison of Sequential vs. Yarrp Probing

- Same targets, same vantage point
- Varied probing rate (20-2kpps)
- Yarrp outperforms sequential, especially near source and as rate increases
- Some hops exhibit different rate-limiting behavior

(NPS/UOregon/Akamai)

Active IPv6 Topology Discovery

IMC 2018 18/27

What about techniques to avoid re-probing initial hops?

- e.g., DoubleTree, also designed for Internet-scale topology probing:
 - Probes backward until it receives a response from a known hop
 - Does not probe complete path, infers missing hops (can be wrong)
- We find that DoubleTree performs better than sequential
- But, rate-limiting (missed responses) causes DoubleTree to continue to probe backward (feedback loop)

IMC 2018 19/27

Fill Mode

Yarrp is stateless

- Must select TTL range (*maxTTL*) (potentially missing hops)
- Don't know when to stop probing (potentially wasting probes)

Fill mode:

For response to probe with TTL=h, immediately probe w/ TTL=h + 1 if $h \ge maxTTL$.

- Not random, but uncommon and at path tail
- Win/win efficiency gain: Allows us to lower the *maxTTL* (less wasted probing), without missing hops.

IMC 2018 20/27

Fill Mode

Yarrp is stateless

- Must select TTL range (*maxTTL*) (potentially missing hops)
- Don't know when to stop probing (potentially wasting probes)

Fill mode:

For response to probe with TTL=*h*, immediately probe w/ TTL=h + 1 if $h \ge maxTTL$.

- Not random, but uncommon and at path tail
- Win/win efficiency gain: Allows us to lower the *maxTTL* (less wasted probing), without missing hops.

IMC 2018 20/27

Outline

- 2) What to Probe
- 3 How to Probe

(NPS/UOregon/Akamai)

Active IPv6 Topology Discovery

IMC 2018 21/27

Probing

- Single runs: May 14, 2018
- 3 vantage points: 2 US Universities; 1 EU Network
- 18 different target sets
- Yarrp6 w/ TTL=16 and fillmode
- ICMPv6 probes
- 2kpps

Ethical Considerations

- Followed good "Internet citizenship" guidelines
- Received two-opt outs (someone's actually monitoring IPv6!)

Active IPv6 Topology Discovery

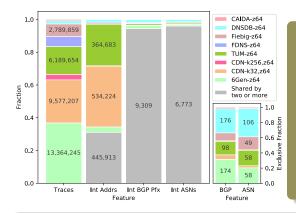
IMC 2018 22/27

Probing

- Single runs: May 14, 2018
- 3 vantage points: 2 US Universities; 1 EU Network
- 18 different target sets
- Yarrp6 w/ TTL=16 and fillmode
- ICMPv6 probes
- 2kpps

Ethical Considerations

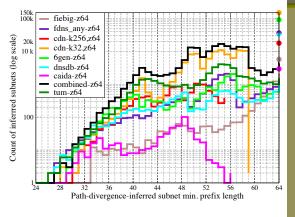
- Followed good "Internet citizenship" guidelines
- Received two-opt outs (someone's actually monitoring IPv6!)


Macro Results

- 45.8M traces to 12.5M destinations (in less than a day)
- Discover 1.4M IPv6 router addresses
- Order of magnitude more than prior efforts
- Including ~0.6M EUI64 addresses (45%!)

Probing Campaign

Features of discovered Interface Addresses (all VPs, *z*64)

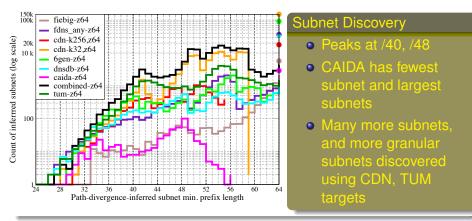


- ~ 70% of interface addresses discovered only via single target set
- 100's of prefixes and ASes only discovered via single target set
- Thus, target sets are complementary

IMC 2018 24/27

Probing Campaign

Subnet Discovery

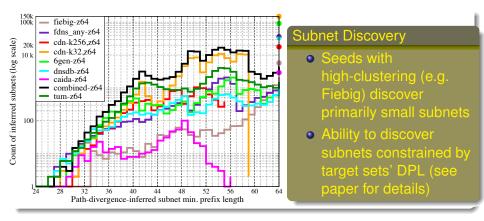

- Anecdotal evidence: wide variety of production IPv6 subnetting practices
- Subnets important to how IPv6 is being used, geolocation, reputation, etc.
- Inspired by Lee et al. , developed a method using traces to find subnetting

U

IMC 2018 25/27

OREGON **KAkamai**

Probing Campaign



Active IPv6 Topology Discovery

IMC 2018 25/27

Probing Campaign

Active IPv6 Topology Discovery

IMC 2018 25/27

EUI64

Unanticipated Result

- EUI64 embeds a device's H/W MAC into its IPv6 address
- For privacy reasons, most OSes use ephemeral random addresses instead
- Surprisingly, across 45.8M traces, discover 651.4k
 EUI64 addresses (45% of all addresses!)

EUI64

Unanticipated Result

- EUI64 embeds a device's H/W MAC into its IPv6 address
- For privacy reasons, most OSes use ephemeral random addresses instead
- Surprisingly, across 45.8M traces, discover 651.4k
 EUI64 addresses (45% of all addresses!)

Implications to Security and Privacy (RFC7721)

- Primarily at the end of the path (CPE!)
- Concentrated among providers and manufacturers
- Working with community to address
- (E.g., next week at IETF maprg WG)

IMC 2018 26/27

Summary

Studied where and how to send IPv6 topology probes

- Using hitlists to generate targets
- Yarrp6 to probe
- Inferred IPv6 subnetting and structure
- Step toward more complete IPv6-level router topologies
- Working within IETF to address privacy aspects of EUI64 infrastructure addresses
- Working toward production deployment within CAIDA

Thanks! – Questions?

https://www.cmand.org/yarrp

IMC 2018 27/27

Summary

Studied where and how to send IPv6 topology probes

- Using hitlists to generate targets
- Yarrp6 to probe
- Inferred IPv6 subnetting and structure
- Step toward more complete IPv6-level router topologies
- Working within IETF to address privacy aspects of EUI64 infrastructure addresses
- Working toward production deployment within CAIDA

Thanks! – Questions?

https://www.cmand.org/yarrp

IMC 2018 27/27