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Abstract

Despite the well-known existence of load-balanced forward-
ing paths in the Internet, current active topology Internet-wide
mapping efforts are multipath agnostic — largely because of
the probing volume and time required for existing multipath
discovery techniques. This paper introduces D-Miner, a sys-
tem that marries previous work on high-speed probing with
multipath discovery to make Internet-wide topology mapping,
inclusive of load-balanced paths, feasible. We deploy D-Miner
and collect multiple IPv4 interface-level topology snapshots,
where we find >64% more edges, and significantly more com-
plex topologies relative to existing systems. We further scru-
tinize topological changes between snapshots and attribute
forwarding differences not to routing or policy changes, but
to load balancer “remapping” events. We precisely catego-
rize remapping events and find that they are a much more
frequent contributor of path changes than previously recog-
nized. By making D-Miner and our collected Internet-wide
topologies publicly available, we hope to help facilitate better
understanding of the Internet’s true structure and resilience.

1 Introduction

An important component of today’s Internet is multipath rout-
ing [18,29,45], where traffic to a destination network is load-
balanced to support higher capacities and provide redundancy.
Prior work developed active measurement techniques to dis-
cover multipath routing [17], while showing that multipath
topologies can be quite complex [45]. However, high probing
loads and runtime have been impediments to their widespread
uptake. As a result, today’s IP and router topology snapshots,
e.g., [21,41], incompletely represent the true, multipath, com-
plex forwarding topology. Indeed, our measurements discover
>2.7M more edges (64%) in the topology as compared to cur-
rent state-of-the-art, and significantly more complex topolo-
gies than previously reported, including >5k edges in a single
provider’s topology corresponding to a single /24 destination
prefix that they advertise.
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The Internet measurement community has long aimed to
capture a complete topology of the Internet, especially as it
has become clear that partial topologies can lead to faulty
conclusions about the network’s properties [15,24,46]. Ob-
taining not just accurate, but complete topologies is crucial
to understanding the network’s resilience to outages and at-
tacks [35,43], as well as aiding in the conception of appli-
cations ranging from content distribution to network secu-
rity [48]. Further, these topologies play a vital supporting role
in other measurement inferences, for instance determining
AS relationships, mapping inter-domain congestion [32], and
geolocation [31] to name a few.

We developed D-Miner to gather Internet-wide multipath
topology maps. D-Miner is a system that marries two recent
advancements in active topology discovery: i) high-speed ran-
domized probing techniques [19] and ii) multipath detection
algorithms [17]. At its core, D-Miner rapidly sends probes
in a randomly permuted order to avoid overloading any sin-
gle path, and iteratively completes its view of the network.
Whereas prior multipath discovery approaches perform a state-
ful breadth-first search path exploration to attain confidence in
the degree of load balancing along the path, D-Miner decou-
ples probing from statistical inference thereby enabling probe
randomization and high-rate probing, while amortizing total
probing cost. D-Miner maintains a set of “unresolved” nodes
—nodes for which the degree of load balancing is uncertain
— and proceeds in rounds until the topology is, statistically,
complete (§3). Having implemented D-Miner, we evaluate its
performance and overhead (§4). Together, these techniques
enable, for the first time, scalable multipath topology discov-
ery and Internet-wide mapping.

Using complete Internet-wide snapshots collected using D-
Miner, we scrutinize dynamics and topological changes. We
find that many “routing changes” are instead due to “load bal-
ancer remapping” events — where the load balancer changes its
current mapping between flow identifiers and paths. We pre-
cisely categorize these events and measure their prevalence,
finding that they are a much larger and frequent contributor
of path changes than previously recognized (§5).



Finally, we deployed D-Miner and collected multiple topol-
ogy snapshots over a one-week period in August, 2019. From
these snapshots, we characterize the prevalence, size, extent,
and location of load-balancing on the modern Internet (§6).
Our contributions thus include:

1. Development and evaluation of D-Miner, a novel scal-
able active multipath topology discovery system.

2. Deployment of D-Miner to gather the first Internet-wide
IP-level topology snapshots inclusive of load balancing.

3. Detailed characterization of Internet dynamics, including
a taxonomy of load balancer remapping events and their
extent and prevalence.

4. Public release of D-Miner’s code and survey results [4].

2 Background and related work

We first review different types of load balancing commonly
found in the Internet. Then, we provide an overview of the
Multipath Detection Algorithm (MDA) [44], the current state-
of-the-art technique for actively discovering load balancing,
and Yarrp, a method for high-speed topology discovery. We
finish this section by describing other related work.

2.1 Load balancing

Load balancing is used to increase aggregate network capacity
and provide redundancy and resilience to failures. Two types
of load balancing are configurable on routers [3, 6, 12]: deter-
ministic and non-deterministic. When a packet arrives on a
router configured with deterministic load balancing (i.e., per-
flow load balancing), and multiple equal-cost routing paths
are available to the packet’s destination, the router chooses a
path by computing a hash over the packet’s header fields [23].
This set of fields used to compute the hash is called the flow
identifier, and typically includes either the source and destina-
tion addresses (per-destination) or the source and destination
addresses and ports (per-flow). Two packets belonging to the
same flow are thus sent over the same path, and this helps
the performance of transport protocols that react to delayed
or out-of-order packets, as well as enabling middleboxes to
have visibility into all the packets of a flow. Herein, we use
the terms “flow identifier” and “flow” interchangeably.

Non-deterministic is also known as per-packet load balanc-
ing. In this configuration, when a packet arrives at a router
with multiple equal-cost paths to the destination, the router
selects among the paths in a round robin fashion.

Our Internet scale survey in §6 confirms two previous re-
sults of Augustin et al. [18] and Vermeulen et al. [45]: (1) load
balancing is prevalent in the network, as 64.7% of our traces
from a source to any /24 prefix contained at least one load
balancing router (branching point); and (2) non-deterministic
load balancing is rare, with only 1.9% of the branching points
identified as implementing this behavior.

2.2 MDA

The Traceroute tool [30] sends probe packets to find forward-
ing paths. It exploits the IPv4 time-to-live (TTL) header field
to induce routers along a forwarding path to send ICMP error
messages, thereby revealing the router’s interface addresses.
The original Traceroute design did not foresee the later emer-
gence of load-balanced paths in the Internet, and it gives
incomplete and incorrect results in the face of load balanc-
ing [16]. Paris Traceroute [16] was developed specifically to
accurately reveal a path through a per-flow load-balanced net-
work. Paris Traceroute ensures that all probe packets, across
different TTLs, have consistent flow identifiers, thereby en-
suring that all measurement packets take the same path in a
load-balanced network. However, in its basic implementation,
Paris Traceroute reveals only a single path to the destination.

The Multipath Detection Algorithm (MDA) stochastically
varies Paris Traceroute’s flow identifiers in an attempt to
enumerate all paths to a destination. For a given vertex with k
known outgoing load-balanced edges, the number of probes
with randomly selected flow IDs needed to verify that it has
no more than k edges is denoted ny, and is termed a “stopping
point” [44]. For example, when 1, 10, or 100 outgoing edges
have already been identified, n; = 6, njg = 57, or njgo = 757
probes are, respectively, required in order to ensure a no more
than 0.05 probability to fail to enumerate all outgoing edges.

Unfortunately, the stateful nature of the MDA and its re-
liance on establishing confidence in the behavior of each po-
tential branching point along the path in a sequential manner
are hinderences to its use for Internet-wide topology studies.

Note, the MDA technique has previously been vali-
dated [18,44]. From this perspective, if D-Miner achieves
the same level of statistical guarantees that the MDA pro-
vides, it validates D-Miner as well. §4 shows that D-Miner
fulfills this condition.

2.3 Yarrp

Yarrp [19,20] introduced the notion of high-speed topology
probing via stateless operation, and random permutation of
targets and TTLs. Whereas previous route tracing techniques,
e.g., [34], iteratively probe TTLs toward each destination,
Yarrp randomizes its probing and decouples probing from
topology reconstruction. This randomization avoids overload-
ing particular paths or routers, thereby permitting higher prob-
ing rates. Further, Yarrp encodes all of the necessary state, e.g.,
originating TTL and time, into probes such that the quoted
replies permit state to be reconstituted. In this fashion, Yarrp
demonstrated the ability to perform Internet-wide route trac-
ing at more than 100k pps.

2.4 Other related work

For more than two decades now, Internet mapping has been
an active area of research. It allows researchers to better un-
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derstand the structure of the Internet [22,28] and to design
better protocols [46]. Today, one can either obtain an Internet
snapshot of the whole Internet without load-balanced paths,
or a reduced snapshot of the Internet with load-balanced paths.
Mapping systems such as CAIDA’s Ark [24] perform contin-
uous surveys from hundreds of vantage points by launching
Paris Traceroute measurements to one random address in
every globally advertised /24 prefix. A complete set of mea-
surements towards all of the /24 prefixes is called a cycle.
Because the address in the /24 is randomly chosen, aggregat-
ing results from multiple cycles reveal some load balancing.
However, Ark is not explicitly designed to reveal load balanc-
ing, does not send enough probes to find all load balancing
(particularly when chained), and does not provide any con-
fidence bounds on discovery. Yarrp [19], described in §2.3,
performs Internet scale surveys at high speed, but is also not
capable of revealing the load-balanced paths. D-Miner en-
ables researchers, for the first time, to obtain snapshots the
entire Internet inclusive of all load-balanced paths.

This new and more complete view of the topology allows D-
Miner to expand the results on load balancing characterization
at Internet scale. Augustin et al. made the first study of load-
balanced paths a decade ago, finding topologies having up
to 16 such paths [18]. More recently, Vermeulen et al. have
shown that per-flow load-balanced paths have become more
complex, by finding topologies with up to 92 interfaces at the
same TTL [45]. In both of those studies, the set of destination
prefixes was a subset of the entire Internet, with, respectively,
~120k and ~350k targets. In contrast our survey contains
traces to ~14.4M /24 destination prefixes.

D-Miner allows us to provide new insights into Internet
dynamics induced by load balancing. In §5.2, we show that a
“routing change” is more nuanced that previously understood,
and that such changes can be due in part to the remapping be-
havior of production load balancers. Paxson’s canonical work
on Internet dynamics [39] studied persistence and prevalence
of routes. Given a source/destination pair, persistence charac-
terizes the number of different routes observed across time
between this pair. The prevalence of a route defines if, within
the set of routes that have been observed, one is more dom-
inant than another. The main result was that Internet routes
were globally stable across time. Note that this work was
performed two decades ago and did not take load balancing

into account. Almost a decade ago, Cunha et al. reappraised
Paxon’s work in light of load balancing [26], and found that
Paxson’s results still held. They also stated that load balanc-
ing remapping is infrequent. We show that it is a widespread
phenomenon in today’s Internet.

More recently Cunha et al. developed DTrack [27], a sys-
tem that maintains an inferred topology and attempts to detect
and predict path changes, although such prediction is difficult.
Our work helps provide insight into potential root causes of
this prediction difficulty.

3 Algorithm

D-Miner is designed to capture Internet topology snapshots
inclusive of all load-balanced paths. At its heart, D-Miner
uses Yarrp’s randomized and stateless probing to achieve high
probing rates. To this, it adds probe set generation logic that
keeps track, on a per-node basis, of whether all outbound load-
balanced edges have been discovered with high probability.
The logic guides Yarrp through multiple rounds until the full
discovery criterion has been satisfied for almost all nodes.
See Figure 1 for a high-level schematic of D-Miner. Yarrp
and the probe set generation logic are deployed at a single
vantage point from which Yarrp probes a set of target prefixes
in the IPv4 Internet. D-Miner proceeds in rounds, maintaining
sets of “resolved” and “unresolved” vertices. Resolved ver-
tices correspond to nodes where all outgoing load balanced
links have been discovered with high probability toward the
set of target prefixes. Conversely, unresolved vertices require
further probing to ascertain whether any load balanced edges
emergent from a node have not yet been discovered.
D-Miner’s main steps are: (1) Yarrp requests the set of
probes for round r; (2) the probe set generation logic returns
the <flow ID,TTL> pairs that correspond to the current set
of unresolved vertices; (3) these pairs are randomized and
probes are sent at high speed using the Yarrp technique; (4)
as replies return, they are processed by Yarrp; and (5) they are
used to update the set of known nodes and each node’s state
as either an unresolved or a resolved vertex. Rounds continue
until 99% of the target prefixes have been resolved.
Whereas Yarrp is totally stateless, D-Miner requires state
to be retained from round to round. A key challenge is to
manage that state in a manner that does not diminish Yarrp’s
performance. Our solution is discussed in §3.2.

3.1 Bootstrapping D-Miner

Since D-Miner is guided by the set of unresolved vertices,
it requires a boostrapping round to seed the set. This round
is a slightly modified version of a classic Yarrp snapshot of
the IPv4 Internet. Whereas Yarrp sends one probe packet per
TTL to each /24 prefix, with the exception of the private and
reserved IPv4 prefixes defined by RFC 6890 [25], D-Miner



sends n; = 6 probes per /24, each with a different flow identi-
fier. This number comes from the MDA stopping condition
for 0.05 failure probability, described in §2.2, that there is just
a single node at a given TTL when probing towards a given
destination. The six flow identifiers correspond to the six first
destinations in the /24. The /24 granularity corresponds to the
commonly accepted longest BGP prefix [42].

In the classic MDA, the n; packets all have a common
destination, however D-Miner varies the flow identifier by
varying the destination within the target prefix. This allows it
to find per-destination-prefix load balanced paths in addition
to the per-flow load balanced paths that classic MDA finds.

As stated in §2.3, Yarrp uses a pseudo random permutation
of 32 bits to determine the parameters for each successive
probe: the first 24 bits determine the /24 destination prefix
and the first 5 bits of the remaining byte determine the TTL.
This leaves 3 bits, which is sufficient for D-Miner to select
ny = 6 different addresses within the destination prefix.

3.2 Maintaining State

Yarrp encodes the originating TTL, timestamp, and checksum
in the probe header fields. These values are visible in the
quotations that arrive in the probe replies, allowing Yarrp
to reconstruct the probe that generated a particular ICMP
without maintaining any internal state. While each individual
Yarrp probing round is stateless, D-Miner must maintain state
from round to round in to keep track of which vertices have
been resolved and which ones remain unresolved. To this
end, D-Miner extracts the following data from each reply:
the original probe’s source and destination IP addresses, port
numbers, and original TTL; and the reply’s source IP address
and ICMP type and code.

So that D-Miner could obtain rapid results for complex
queries on tables of billions of rows, we sought a database
system that is optimized for online analytical processing, set-
tling on ClickHouse [2]. The data from each reply is inserted
and ordered by: source IP address, /24 destination prefix,
destination IP address, TTL, source port number, and desti-
nation port number. ClickHouse is highly parallelized and
its groupArray features make the algorithm calculations de-
scribed in §3.3 and the analyses of §4, §5, and §6 tractable.

3.3 Subsequent probing round computation

Once the replies have been inserted into the database, we
query it to generate the next round of probes. Our goal, con-
ceptually, is to calculate the set of additional probes with new
flow identifiers required to meet the remaining statistical guar-
antees for each /24 prefix, given the current knowledge of
the topology. Mathematically, the next round probes is the
minimal expected set of probes needed to reach the statistical
guarantees for each branching point, grouped by /24 prefix.

3.3.1 Reducing MDA statefulness

This section describes our algorithm to generate a new batch
of probes given a topology and the set of probes already sent.

Let us fix a source and a /24 destination prefix. We present
an example in Figure 2 to help provide intuition. This topol-
ogy illustrates a possible result after each of three hypothetical
rounds of probing. Each link is annotated with the number of
probes that expired at the ingress interface of the subsequent
node. At round 1, D-Miner sent n; = 6 probe packets per
TTL, each with varying destinations in the destination prefix
to vary the flow identifier. The value of n; is determined by
the desired failure probability to find all the successors of a
branching point. In this work we set n; = 6, corresponding to
a failure probability of 0.05, which is the default value used
by the MDA implementation in previous work [18,27].

Recall, after sending 6 probes and only discovering a sin-
gle successor, we have a probability of 0.95 that there is
indeed only a single successor (n; = 6), while we must send
11 probes to achieve the same probability that there are only
two successors (1o = 11). To understand how we compute the
next batch of probes, we introduce the following notation:

Let us fix the TTL to A.

Let R, be the set of nodes discovered at TTL # that have
not been resolved yet.

Let Dy, be the probability distribution of nodes responding
for TTL h after the current probing round. For example, in
Figure 2 after the first round of six probes per TTL, D, =
fra=dw=2},

Let k, be the number of successors for node v.

Let #;, be the number of probes already sent at TTL A.

Let n be the stopping point described in §2.2.

Proposition 1. Given h, R, and Dy, the minimal expected
number of probes needed to reach MDA statistical guarantees
for all the elements of Ry, is:

max [ —k_ _y, AtTTL h
VERy, Dh (V)
T AtTTL h+1
max| —— —
ver, \Dy(v) !

Proof. Let v € R,. The MDA hypothesis, which is that v
might have a (k, + 1)™ successor tells us that we need to send
n, probe packets with TTL £ that first reach v, and then send
ng, with the same flow identifiers to TTL A+ 1. Let X, be
the random variable representing the number of probes that
reach node v given Dj,. Our objective is to find the minimum
number of probes N such that:

Y, E[Xy] = Dp(V)N >=my, (1)
For this condition to hold, we must set N at minimum to:
N n,
= max
veRy, Dy, (V)
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Figure 2: Example topology resolved by three rounds of D-Miner probing. Link annotations represent number of probes expiring

at ingress interface of subsequent node.

‘We have:

ng,
W, E[X,] = Dp(v) max —— >=D
X i )v’eRh Dy(v')

Mk,
v J— 2
h (V) Dh (V) n, ( )
We just subtract the number ¢ of probes that we have already
sent to TTL h, and this concludes the proof. O

Every TTL h generates a number of additional probes for
TTL h and TTL A+ 1. For each TTL &, we therefore have
two possible values: the one generated by additional probes
for TTL i — 1 and the one generated by additional probes for
TTL h. So that the condition given in Eq. 1 holds for every
node of the topology, we choose the maximum between these
two values (rounding fractional values to integers).

Let us perform the numerical application on the topology
of Figure 2. After round 1, we have discovered the topology
on the left side of the figure. At TTL1, Node v has two
successors, D (v;) = 1. 6 probes have been sent to TTL 1
and 6 probes have been sent to TTL 2. Proposition 1 brings
np — 6 = 5 additional probes for TTL 1 and 2. At TTL 2,
Node v, has one successor, and D;(vy) = % Node v3 has
one successor, and D;(v3) = % 6 probes have been sent to
TTL 2 and 6 probes have been sent to TTL 3. Proposition 1
brings 3n; — 6 = 12 additional probes for TTL 2 and 3. At
TTL 3, notice that v4 and v5 are similar to v, and v3, so that
Proposition 1 brings 3n; — 6 = 12 additional probes for TTL
3 and TTL 4. For each TTL, we take the maximum number
of probes between TTL and TTL-1. At the end, we have to
send for the second round: 5 probes at TTL 1, 12 at TTL 2,
12 at TTL 3 and 12 at TTL 4.

The figure in the center shows the state of the topology
after round 2. At TTL 1, we see that v; has been resolved
because it has two successors and 11 = n; flows pass through
it. At TTL 2, v, has also been resolved because it has one
successor and 8 > n; flows have been sent through it. v3 is
not solved, because now it has two successors so it needs
ny = 11 flows that pass through it. We have D;(v3) = % and
18 probes have been sent to TTL 2 and 3. Proposition 1 brings
81, — 18 = [1.8] = 2 additional probes for TTL 2 and 3. At
TTL 3, we see that v4 and vs5 have been resolved, but v7 has
not. We have D3(v7) = % and 18 probes have been sent to

TTL 3 and 4. Proposition 1 brings %nl — 18 =9 additional
probes for TTL 3 and 4. For each TTL, we take take the
maximum number of probes between TTL and TTL-1. At the
end, we have to send for the third round: O probe at TTL 1, 2
at TTL 2,9 at TTL 3 and 9 at TTL 4.

The figure on the right shows the state of the topology after
round 3. We see that now v3 and v;7 have been resolved, so
that we consider the entire topology as resolved.

3.3.2 Varying the flow identifier

For each destination prefix and TTL where additional probes
are needed, we select new flow identifiers by incrementing
the last destination in the prefix used in the previous round. In
the example of Figure 2, suppose that our prefix is X.Y.Z.0/24.
After round 1, the first 6 IPs of the prefix have already been
used as probe destinations, so we would send 5 more probes
at TTL 1 from X.Y.Z.7 to X.Y.Z.11, 12 more probes at TTL 2
from X.Y.Z.7 to X.Y.Z.18, etc. If there are no more destina-
tions available in the prefix, we change the destination port to
vary the flow identifier.

3.4 Randomizing the probes

Randomizing the probes is done per-flow. For each prefix
which needs additional probes sent, we group the additional
probes by flow. In the example of Figure 2, after round 1, we
send X.Y.Z.7 at TTL 1, TTL 2, and TTL 3, and TTL 4. All
of these are packed together so that we ensure that probes
with the same flow identifier are sent in a very short time win-
dow. This avoids the inference of false links due to potential
routing changes during the probing time. Nevertheless, it is
possible that X.Y.Z.8 probes are sent at a separate time from
X.Y.Z.7. In this way we retain one of the benefits of Yarrp’s
randomization, to minimize potential ICMP rate limiting.

3.5 Per-Packet load balancing

As described in §3.1, the first round of probes allows us to dis-
cover if there is one or more load-balancers on the path from
the vantage point to the destination prefix. However, sending



only one packet per flow identifier does not reveal the nature
of the load balancing, i.e., deterministic (per-destination or
per-flow) or non deterministic (per packet). For per-packet
load balancers, the links between interfaces of a traceroute can
not be reliably inferred. Because we want to be able to flag
per packet load balancers, D-Miner sends two back-to-back
probes per flow instead of one until it reaches a defined thresh-
old probability that the branching point is not a per packet
load balancer. If we get two different responses for flows with
the same flow identifier, the branching point is flagged as a
per packet load balancer and the edges discovered after it are
ignored in the results. Mathematically, an upper bound of the
probability to miss that a load balancer is actually a per packet
load balancer is the probability that all the pairs of probes
with the same flow identifiers passing through it get the same
reply IP. Suppose there is a branching point with k branches.
Then the probability that all these pairs of probes get the same
response is then kip where p is the number of pairs of probes
sent going through this branching point. We set the threshold
probability in D-Miner to 0.95, as previously done in [18].

4 Evaluation

Over one third of the edges in the Internet’s topology are not
being revealed by current state-of-the-art methods, as §4.4
describes. D-Miner, run from from six PlanetLab Europe van-
tage points, discovered more than 7.1 million edges during a
week of August 2019, a time during which Ark, probing from
its 112 VPs, found ~4.4 million edges and Yarrp, probing
from the same PLE VPs as D-Miner, found ~2.5 million.
Although this additional coverage comes at the cost of 2-4
times as many probes compared to these existing approaches
(§4.4.1), we show that this volume is required due to forward-
ing path dynamics.

In addition to evaluating node and edge discovery, we eval-
uate D-Miner’s algorithmic and system properties. D-Miner’s
round-iterative design engenders 14% higher overhead than
would be incurred sending traditional source-to-destination
style MDA Paris Traceroutes from the same vantage point, as
§4.2 shows. This is the cost associated with D-Miner adopting
a stateless and randomized (Yarrp-based) design, in exchange
for the advantages conferred by this design in terms of probing
speed. §4.3 evaluates D-Miner’s running time. First, however,
§4.1 describes the datasets we collected, and shows that 10
rounds suffice to reach statistical guarantees for 99% of the
/24 destination prefixes.

4.1 Dataset

Our evaluation dataset includes three D-Miner snapshots, each
consisting of 10 rounds. These snapshots were collected over
a one-week period, from 6-13 August 2019, using a single
vantage point at our university, which enjoys a 1 GB link to
the Internet. Each snapshot was collected using a probing
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Figure 3: CDF of /24 IPv4 prefixes meeting their statistical
guarantees, over three 10-round snapshots (dates in parens)

Table 1: Probing Overhead of D-Miner versus MDA.

Overhead Factor S(‘:?gsg(_);)l ?Xilg)sél_ TS (S::; ?;(_); 3)
Loss (I) 481,359,024 448,428,279 569,173,354
Reached destination (IT) 166,941,456 165,227,106 163,821,372
Last round (III) 54,023,123 46,324,355 50,012,378
Total Overhead [pkts] 702,323,603 659,979,740 783,007,104

D-Miner Sent [pkts] 6,976,307,081 | 6,569,819,008 | 6,598,837,985

MDA Sent [pkts] 6,273,983,478 | 5,909,839,268 | 5,815,830,881

D-Miner Overhead [%] 12 12 14

rate of 100,000 pps; this rate was capped out of respect for
network and service provider policy concerns; D-Miner is
capable of probing much faster (>800,000 pps observed).

In addition, for the topology discovery section, we have
deployed D-Miner on six PlanetLab Europe (PLE) [7] nodes
located in Europe and run it at a lower rate, 10,000 pps, during
the same week. We used UDP probes as these have been
shown to discover more links than other protocols [36]. A web
page hosted at the IP address of our vantage point described
the experiment and provided instructions for opting out; we
did not receive any such requests during our measurements.

Figure 3 illustrates how 10 rounds of probing suffices to
achieve statistical guarantees toward more than 99% of the
IPv4 /24 destination prefixes. The mean portion of resolved
prefixes over the three 10-round snapshots is 99.6%.

4.2 Probing overhead

Intuitively, we might expect D-Miner to have lower overhead
in order to achieve scale. However, the stateless high-rate
probing required comes at the cost of additional total probing.
The probing overhead generated by D-Miner compared to
sequentially running the traditional MDA to all of the /24
prefixes depends on three factors: (I) potential loss induced
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Figure 4: Time spent in each step of D-Miner for each round,
averaged across three snapshots.

by a high probing rate; (I) the TTL at which the MDA would
have stopped because of reaching the destination; and (III)
sending more probes in the last round than required to reach
the statistical guarantees. Table 1 quantifies each of these
overhead factors across our three snapshots, where we find a
maximum overhead of 14%.

Note that we conservatively compute the loss due to high
probing rates. If for a given (destination prefix, TTL) pair, if
at least one of the probes receives one response, we count all
the probes sent with the same (destination prefix, TTL) pair
as losses if they do not produce a response. Conversely, if no
responses at all are received for this (destination prefix, TTL)
pair, i.e., this hop is “anonymous”l, we do not count these
probes as lost.

To compute the TTL at which the MDA would have
stopped, we find the minimum TTL for which all probes’
reply IPs equal their destination IP. If we never receive a reply
from the destination, we assume that MDA would act like a
default linux traceroute, i.e sending probes until it reaches the
maximum TTL (30).

And finally, to compute the last round overhead, we sim-
ulate for each of the destination prefixes a run of the MDA
with the same flow identifiers and compute the actual probe at
which it stops due to having reached the statistical guarantees.

4.3 Run time

The server used for the computation was the same as the one
we used for probing, provisioned with 16 cores and 187 GB
of RAM. Figure 4 shows the stacked error bars of the time
spent across each round in each routine. The sum over the
rounds indicates that a snapshot of 10 rounds takes an average
of 3,713 minutes (about 2 days and 14 hours) to complete.
We distinguish two phases in our system: Until round 4,
the probing routine consumes a significant portion of the
total round time, however, in rounds 5-10, almost all the time
is spent in the fetch_round routine. Note the relationship

lRepresented as a * in traditional traceroute output [9]
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between time (Figure 4) and the fraction of resolved prefixes
(Figure 3). While the amount of probing time required in
rounds 6-10 is relatively inexpensive as compared to the ear-
lier rounds, we see that the algorithm is primarily optimizing
at this point, with >90% of the prefixes resolved by the fifth
round. Conversely, only ~50% of the prefixes are resolved
after the third round, demonstrating that the runtime cost of
probing in the early rounds is required.

Notice the evolution of the time spent in the fetch_round
routine: The time needed to compute the next round probes
increases with the size of the table of our database in rounds 1-
4. Then, from round 5 on, the reduction in time spent probing
indicates that far fewer probes are sent, and consequently the
table does not grow as much as during the earlier rounds.
Still, the time of fetch_round remains constant; one must
recompute the state of each branching point at each round to
compute the next one.

4.4 Topology discovery

Finally, we consider the topology discovery results them-
selves. Note we ignore responsive target addresses (since
we are only interested in the routed topology) as well as any
edges connecting the destination nodes.



Table 2: Topology discovery

Nodes Edges
Snapshot 1 | Snapshot2 | Snapshot 3 Agg. Snapshot 1 | Snapshot2 | Snapshot 3 Ags.
(Aug 6-8) (Aug 8-11) | (Aug11-13) (Aug 6-8) (Aug 8-11) | (Aug11-13)

D-Miner 1,057,832 1,017,389 1,024,178 | 1,373,149 2,906,204 2,997,581 3,059,770 | 4,600,689
Yarrp 545,536 492,694 516,363 632,405 977,201 898,607 916,196 | 1,279,171
Multi-VP Ark 1,432,604 1,635,779 1,343,009 | 1,923,038 3,044,747 3,472,120 2,994,190 | 4,365,515

Multi-VP Yarrp 802,891 2,483,816

Multi-VP D-Miner 1,613,301 7,143,490

Figure 5 shows the cumulative discovery, with error bars,
of each round across the three D-Miner snapshots. We find
that both nodes and edges have similar behavior with two dis-
covery phases, with an initial high discovery-per-round phase
until round 3 (nodes) and 4 (edges) followed by a refinement
phase from round 4 (nodes) and 5 (edges) to round 10. Note
also that the number of nodes and edges varies little across
the three snapshots, however, this does not mean that they
discover the same set of nodes and edges as we will discuss.

It is challenging to make direct comparisons previous topol-
ogy data sets — not only is the network dynamic, but the results
are also significantly influenced by differing vantage point(s).
Instead, we seek to make a reasonable comparison of D-Miner
with existing Yarrp and Ark systems.

To compare with Yarrp, we extract from our D-Miner snap-
shots results given by selecting only one destination per /24
prefix in the first round. To compare against Ark, we obtain all
topology traces from all 112 vantage points corresponding to
the date range of our snapshots (this includes 19 “cycles” that
were performed during the week). We aggregate the topology
found from all cycles during the D-Miner snapshot collection
to compare findings from the same time period.

Table 2 gives the comparative topology results. The “Agg.’
column shows the aggregated results over the three snapshots.
The two last lines of Table 2 show the aggregated topology
discovery results across the six PLE nodes for Yarrp and
D-Miner over the same week covered by the three snapshots.

The multiple vantage point results in this table are signifi-
cant. With 6 vantage points, D-Miner discovers >7M edges
and approximately 1.6M nodes. To verify that this difference
is primarily due to load balancing, we look at how standard
Yarrp performs when used from these 6 vantage points. We
see that D-Miner discovers two times more nodes and almost
three times more edges than Yarrp.

Interestingly, we see that D-Miner from a single vantage
point still benefits from snapshot aggregation. This means
that there are non-negligible variations in the discovery of the
three snapshots. Figure 6 shows the minimum per-prefix dif-
ference of number of nodes and edges discovered between the
three snapshots over the 14,461,947 prefixes that we probed.

1

As an example, for a prefix, if snapshot 1 discovers 20 nodes
and 40 edges, snapshot 2 discovers 20 nodes and 34 edges,
and snapshot 3 discovers 20 nodes and 36 edges, the mini-
mum difference for nodes is O and 4 for edges. We observe
two results: Less than 20% of the prefixes discover the same
number of nodes and edges for the three snapshots, and 88.3%
of the prefixes have a variation of less than 10 edges.

We believe that these variations are related to load bal-
ancing remapping (see §5.2). Indeed, the difference is not
attributable to high probing rate induced loss, as Table 1 has
shown than fewer than 10% of the probes were lost due to
rate across the three snapshots.

Please note that we do not claim a comprehensive com-
parison with Ark discovery. The two systems have intrinsic
differences that would not allow us to state conclusively why
D-Miner or Ark would discover more than the other system.
For example: (1) Ark uses ICMP probes, which has been
demonstrated by Luckie et al. in [36] to discover fewer links
than UDP. (2) The two systems’ vantage points are not located
at the same points in the network. Therefore, Ark could miss
load balanced paths that are in a region of the Internet that is
not accessible from its vantage points.

4.4.1 Probes sent

In total, we compute that Ark sent 5,935,460,660 probes.
From Table 1 we compute that D-Miner from one vantage
point sent 20,144,964,074 probes. And finally, we compute
that the multiple vantage points version of D-Miner has sent
13,192,962,692 probes in total across the 6 PLE nodes.
These numbers give an idea of the overhead necessary to
discover the load balanced paths. We show in the next section
that reducing this number is hard because of the dynamics.

4.5 Validation on ground truth

To complement the formal and experimental analysis of our
system, we solicited ground truth from operators. Of 380
interfaces with multipath edges discovered within Internet
Initiative Japan (IIJ), they validated that 51 interfaces belong-



ing to NTT were on PPPoE routers performing ECMP to
I1J. We further learned that the remaining 329 interfaces are
performing ECMP inside I1J’s network.

In addition to direct correspondence with I1J, we developed
a website [14] where operators can validate links discovered
by D-Miner. We received responses from three operators, for
a total of 20 links. 18 validated correctly while two were
declared as false. We re-conducted paris traceroute measure-
ments to the destinations corresponding to the two false posi-
tive links. These links were found between the penultimate
and the last IP seen in the traces. The last IP, which was not
the destination IP, was repeating on all the subsequent TTLs
until 30. Our interpretation is that this error was due to a
routing loop or misconfiguration.

5 Forwarding path dynamics

With D-Miner, we reveal aspects of Internet dynamics that
were under estimated [26] by the research community. 28.6%
of D-Miner’s probes saw their reply’s IP address change, de-
spite the flow identifier remaining constant over our three
August 2019 snapshots. This would seem at first glance to
be a startlingly high figure, implying more extensive routing
changes than one might expect throughout the Internet [26,38].
But we provide evidence that, rather than routing changes, an-
other phenomenon that we term load balancer remapping was
responsible for at least 52% of these changes. These observa-
tions imply that future work should be cautious in attributing
an observed traceroute change to a routing change.

5.1 Taxonomy of probe changes

A probe is uniquely identified by its (flow ID,TTL) pair. We
say that there is a probe change if a probe elicits a reply from
a different IP address in snapshot i 4 1 than in snapshot i.
There may be as many probe changes as there are probes. We
distinguish between meaningful and trivial changes.

To begin with, we do not count an absence of response as
a meaningful change. That is, if a probe elicits a response in
snapshot i and there is no reply to the probe in snapshot i + 1,
this difference may be attributable to loss or rate-limiting and
is not indicative of a change. Similarly, we ignore absence in
one round followed by a response in the next.

We are particularly interested in examining each probe
change from the perspective of its predecessor node. Consider
a probe (X,h) with flow ID X, sent with TTL A, revealing
a vertex vq; and a probe (X,h+ 1) revealing a vertex v,. If,
in the next snapshot, (X,h) reveals v, again but (X,h+ 1)
reveals v3, it is reasonable to infer that a mechanism at the
router with interface v is responsible for this probe change.
Perhaps there has been a routing change, and the routing table
at that router has been updated. Or, and this is the possibility
that we focus on here: perhaps there has been no routing
change, but instead that router is a load balancing router and

the probe change results from a new load balancing decision
for packets with flow ID X.

Previous research has identified per-packet load balanc-
ing [18] where a router simply disregards the flow ID X in its
load balancing decision, for instance directing some packets
to v, some to v3, and some, perhaps, to other neighboring
vertices, in a round-robin or (pseudo-)random fashion. As
§3.5 describes, D-Miner tests for per-packet load balancing,
and we exclude any reply variation due to that mechanism
from our accounting of meaningful probe changes.

A possibility that previous literature has not explored is
that a probe change could result from a per-flow or a per-
destination load balancer making a load balancing change
rather than a routing change. As an example, consider probe
packets with flow IDs X and Y that both have the same desti-
nation IP address d. In snapshots i and i+ 1, probes (X, /) and
(Y, h) both elicit replies from vy, whereas in snapshot i, probe
(X,h+ 1) elicits a reply from v, and probe (Y,2+ 1) from
v3, and in snapshot i + 1, the replies are reversed. From one
snapshot to the next, there has been no routing change for d at
v1: packets with that destination address continue to be load
balanced across v, and v3. But suppose the test for per-packet
load balancing at v has failed. We are left to consider that the
probe change results from an update to the hashing decision
that assigns flow IDs to next hop IP addresses. This is what
we term load balancer remapping.

5.2 Load balancer remapping

Production systems are more nuanced in their behavior rel-
ative to the overview of load balancing in §2.1. For deter-
ministic load balancing, in addition to header fields used to
compute the hash function, a seed is generally added to avoid
a phenomenon called load balancing polarization [1,11,13],
which occurs when load balancers are chained and apply the
same hashing algorithm, potentially causing load imbalance.

We experimented with Cisco routers running IOS 12 in a
lab environment and confirmed that this seed is configurable.
If the Cisco router reboots and has no saved seed, it generates
a new random seed. For Juniper and Huawei, documentation
tells us that they also use a seed [11, 13].

Thus, at least for Cisco, Juniper, and Huawei routers, a
flow that took a certain load balanced path before a reboot
can take a very different path after the reboot. Moreover, re-
moving or adding an interface on a load-balancing router(s)
toward a destination can cause the path assignment to be
recalculated [8, 10]. The particulars of the load balancing im-
plementations in production can cause the reply IP address of
a probe to change, even when no routing change has occurred,
and the flow identifier is constant.

We attempt to identify in our dataset probe changes that
correspond specifically to load balancer remapping. Our con-
servative rule of thumb is to say that if we observe a mean-
ingful change for probe (X,n+ 1), but at least one of the
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Figure 7: Examples of three different types of changes for
probe 2 across two snapshots i (left) and i + 1 (right). In all
cases, E;NE;+1 # 0 = we infer these as remapping events.

edges of the predecessor vertex is the same between snap-
shots, then remapping is taking place. If no edges are the
same, it could still be the result of load balancer remapping
instead of a routing change, but without evidence to allow us
to infer this. Thus, our observations will underestimate the
ubiquity of remapping.

We define E;(p) to be the set of out edges in snapshot i
from the predecessor vertex of a meaningful change for probe
p = (X,h) (again, where a probe is a flow ID X and TTL &
tuple). For each candidate meaningful-probe-change, we infer
that the change is due to remapping if E;(p) NE;+1(p) # 0.

Several classes of meaninful changes can be more more
precisely characterized into subcategories. Either E;(p) and
E;11(p) can be: (1) equals, meaning that the changes might
be due to a router reboot (E; = E;1); (2) one set is included
in the other, corresponding to potential addition/removal of
some load balanced paths (E; C Ejy or Ej| C E;); or (3) the
sets have elements in common, but no inclusion relation can
be established ((E; € Eiy1) A (Eiv1 € Ei)), e.g., when load
balanced paths are both added and removed.

Figure 7 illustrates these three cases by depicting of remap-
ping from one snapshot, i (left), to the next, i 41 (right). Con-

Table 3: Changes per (flow ID, TTL) probe on three snapshots.

Changes 0 1 2
Count 2,184,277,681 | 652,241,148 | 223,614,385
Total 3,060,133,214

Table 4: Relation between the sets of edges where there have
been probe changes.

ENEi 1 =0 EiNEi+1 #0
E;=FE;i E; CEi Ei D Ei Other
478380414 52,241,971 | 89,118,791 | 79,239,945 | 301,327,548
521,928,255
Total: 1,000,308,669

sider probe 2 in Fig 7a which is a meaningful change since it
elicits v3 in the first snapshot and v; in the second. The edges
from the predecessor of these changes are the same between
snapshots, i.e., E;(2) = Ei1(2) = (vi,v2),(v1,v3). Note that
the reciprocal change is observed by the flow 1 probe in i+ 1,
for a total of two inferred remapping events.

In the example of Figure 7b, probe 2 is again a meaningful
change, but in this instance elicits a new vertex v3 in the
second snapshot. In this case, the predecessor edges in the
first snapshot are a subset of the second, i.e., E;(2) = (vi,v2)
and Ej11(2) = (v1,v2),(v1,v3). Finally, Figure 7c shows an
example of no inclusion relation where there is both a new
and deleted edge due to remapping.

5.3 Remapping observed

We now quantify probe changes and remapping observed
across our three snapshots of §4.1. Because identifying remap-
ping requires observing probing changes between two con-
secutive snapshots, we restrict our analysis to the set of
probes with replies from two consecutive snapshots. Of
the 6,019,578,262 unique flow IDs that elicited replies in
our database (11,689,101,599 replies in total), we find that
3,060,133,214 of them are present in two consecutive snap-
shots, representing a bit more than half of the flow IDs.

To understand why nearly half of the probe replies do not
appear in two consecutive snapshots, we find that for 87%
(2,576,532,888) of them the probe ID has in fact been sent
only in one snapshot. This is due to the adaptive nature of
the D-Miner algorithm resulting in variations of discovery
between snapshots presented in §4.4. If, for example, the
number of edges discovered for a prefix differs across the
three snapshots, the statistical guarantees tell us the number
of probes that must be sent will also differ. This results in
some probe IDs being sent in only one snapshot. The result is
that we are likely underestimating the number of meaningful
probe changes. For the remaining 13.0%, the probe was sent



in two consecutive snapshots, but did not elicit two replies.
This is likely due to normal packet losses in the network and
possibly ICMP rate limiting [40].

We start by looking at the number of probe changes. Ta-
ble 3 shows the distribution of the number of probe changes
per probe. We see that 28.6% of the probes have at least
one probe change. This number seems unusual if we were
to consider it all as routing changes.Table 4 explains the
previous 28.6% fraction by providing the distribution of
1,000,308,669 changes according to the remapping classifica-
tion. The “Other” column refers to changes with no inclusion
relationship but element(s) in common. Notice that the sum
of these classifications is slightly smaller than total number
of probe changes. The missing probe changes correspond
to cases where there was no predecessor for the node corre-
sponding to the IP reply elicited by the probe. This would
happen in Figure 7 if v; was anonymous (a ‘*’) for example.

We see that 52.2% of the probe changes correspond to
remapping, which temper the impact of the 28.6% probe
changes on routing changes. Finally, for each of the probe
changes corresponding to remapping, we performed IP to AS
translation on the corresponding IP reply, using August 4,
2019 BGP data from route views [5]. We found that remap-
ping events were spread over 39,455 ASes, showing that this
phenomenon is widespread. We conclude this section by not-
ing that all of the changes between snapshots, either due to
D-Miner varying the set of probes from one snapshot to an-
other; real dynamics such as routing changes; or remapping
due to reboots and/or adding/removing load balanced paths,
make any efficiency optimization based on historical discov-
ery hard. It also further corroborates Cunha et al.’s finding
that it is difficult to predict path changes [27].

6 An updated Internet load balancing survey

Its been eight years since the last published survey of load bal-
ancing in the Internet [18]. Whereas this previous study was
limited to MDA traceroutes to ~120k targets, in this section
we undertake the task of leveraging D-Miner to perform an
exhaustive survey of Internet load balancing on 14,461,947
/24 destination prefixes.

Some things have certainly changed. We now see far larger
load balanced topologies, for instance, with thousands of
edges, instead of tens. This section updates our understand-
ing of load balancing in the Internet, with some of the more
notable results being: 17.9% of load balancing takes place
between autonomous systems (i.e., inter-AS load balancing);
just one autonomous system accounts for the topologies that
contain more than 2000 edges; 64.7% of our traces towards
all of the /24 prefixes contain at least one branching point
(but this might be vantage point dependent); and 1.9% of
branching points are per-packet load balancers.
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Figure 8: Intra- and inter-AS/organization load balancing.

6.1 Dataset

From the first snapshot of §4.1 (Aug 6-8, 2019), we extract
all of the unique “diamonds” found on the load balanced
paths. We adopt the same definition of a diamond as given
by Augustin et al. [18]: a diamond is “a subgraph delimited
by a divergence point followed, two or more hops later, by a
convergence point, with the requirement that all flows from
source to destination flow through both points.” We say that
two diamonds are equal if they share the same divergence
and convergence points. When the divergence point or the
convergence point is a * (i.e., this TTL is “anonymous”),
we say that two diamonds are equal if they have identical
node sets. In sending probes towards all IPv4 /24 destination
prefixes, we extracted 4,029,866 unique diamonds.

6.2 Intra- and inter-AS load balancing

Augustin et al. found just one instance of inter-AS load bal-
ancing in their 2011 survey [18], whereas we now find it to be
a more prevalent practice. We use Oregon Route Views BGP
data [5] from 4 August 2019 to map IP addresses of the router
interfaces comprising diamonds we discover in the Internet
to autonomous systems (ASes). We further map AS numbers
to organization names using CAIDA’s AS Rank [33].

IP address to AS mapping is an outstanding research prob-
lem, and correct attribution is known to be difficult [37]. For
instance, the IP address of a customer or peer border router is
frequently allocated from her provider or peer’s address space.
We therefore adopt the same methodology of Augustin et
al. [18] of not including the diamond’s divergence or conver-
gence point when determining the diamond’s AS composition.
Thus, our estimates of inter-AS load balancing are intended
to be conservative.

The CDFs of Figure 8 show that, while most load balancing
still takes place within a single autonomous system (AS) or
organization, a significant portion takes place across two or
more of them: 18.7% for ASes and 17.9% for organizations.
In one case, we found a single diamond with addresses from
12 ASes (explaining why the CDF continues to 12).
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Figure 10: Extract of D-Miner trace to an Amazon /24 prefix.

6.3 ASes that host load balancers

We next investigate the relationship between the size of an AS
(measured as number of customers) and the prevalence of load
balancing in that AS. We use AS Rank from CAIDA [33]
to perform the AS to customers mapping. When there is
more than one AS in the diamond, each AS in the diamond
is counted one time. Figure 9 shows no clear correlation
between the number of customers in an AS and the amount of
load balancing we infer, suggesting that load balancing is not
limited to large networks, but is a widespread phenomenon.
However, there are some extreme cases involving
large networks. We find 74 diamonds of more than 500
nodes each in the network of a French mobile network
operator (SFR). Other ASes contain diamonds with
>10° diamond edges, as seen in Figure 9b. There are
8,407 diamonds with more than 2,000 edges, of which
8,400 belong to Amazon — likely entry points to their
datacenters. The DNS PTR records for the diamond’s IP
addresses are variations of the address and location, e.g.,
ec2-54-178-57-0.ap—northeast-1.compute.amazonaws.com.
These names are characteristic of Amazon’s cloud infrastruc-
ture. An example of such of a trace is shown in Figure 10.
This figure shows the last TTLs of D-Miner tracing from a
single VP to a single /24 prefix belonging to Amazon. The
topology itself strongly resembles current data center design
practices that use Clos architectures [47]; we requested
validation from Amazon, however, they were unable to
provide any corroborating information due to their internal
privacy polices. This example, one of thousands in our data,

shows just how complex load balanced topologies can be
— complexity that would otherwise be missed without the
comprehensive multipath mapping D-Miner provides.

7 Conclusion and future work

In this work we present D-Miner, the first Internet-scale sys-
tem that captures a multipath view of the topology. By com-
bining and adapting state-of-the-art multipath detection and
high speed randomized topology discovery techniques, D-
Miner permits discovery of the Internet’s multipath topology
in 2.5 days when probing at 100kpps. This high speed allows
us to characterize and quantify dynamic behaviors of the In-
ternet induced by load balancing. Finally, D-Miner enables
for the first time an Internet Scale survey of load balancing
that shows its widespread prevalence, both in the core and at
the edge. We release the D-Miner source code and make our
datasets publicly available.

Our hope is that D-Miner and our data will facilitate better
understanding of the Internet’s true structure, properties, and
resilience. Future work includes running D-Miner with other
transport protocols to compare load balancing usage between
them at Internet scale, as well as adapting D-Miner to IPv6.

Our empirical data suggests that there are a set of load bal-
anced architectures common to different provider types, for
instance those deployed in data centers versus mobile opera-
tors versus transit providers. We believe there is significant
opportunity to develop a taxonomy of these common archi-
tectures and classify results accordingly, as well as to identify
previously unidentified load balanced architectures that are
deployed in the wild. Comprehensive mapping of some of
these topologies may require probing both from outside and
within the provider’s network; we leave an exploration of e.g.,
internal data center probing to future work.

Finally, in order to provide regular surveys to the commu-
nity, we wish to deploy D-Miner on more vantage points at
high probing speed, create periodic snapshots and perform
alias resolution on the resulting discovered topologies.
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