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Abstract—IP geolocation has myriad applications. While a body
of prior research has investigated the accuracy of geolocation
databases, we take a first look at their stability. Using a large
collection of snapshots from a popular geolocation database,
we examine the longitudinal evolution of its location mappings
and address coverage. Across different classes of IP addresses,
we find that significant differences can exist even between two
successive weekly snapshots – a previously underappreciated
source of potential error. To assess the sensitivity of research
results to the geo database instance, we examine a prior study [1]
that used geolocation. Using their data and methodology, we
generate results for each database instance available during
their measurement period, i.e., the hypothetical results had the
authors used a different snapshot. We show that the median
distance of addresses considered shifted over 100km from ground
truth and the coverage differed by 30% – potentially impacting
the conclusions of this prior study. Based on our findings, we
recommend best practices when using geolocation databases for
network research to encourage reproducibility and soundness.

I. INTRODUCTION

Determining the physical location of Internet hosts is
important for a range of applications including, but not limited
to, advertising, content and language customization, security
and forensics, and policy enforcement [2], [3], [4]. However,
the Internet architecture includes no explicit notion of physical
location and hosts may be unable or unwilling to share their
location. As a result, the process of third-party IP geolocation
– mapping an IP address to a physical location – emerged as a
research topic [5] more than two decades ago and has since
matured into commercial service offerings, e.g., [6], [7], [8].

IP addresses represent network attachment points, thus
IP geolocation is often inferential. Commercial geolocation
providers compete, so the methodologies for creating their
databases are proprietary. State-of-the-art techniques include
combining latency constraints [9], topology [2], registries [5],
public data [10], and privileged feeds [11].

This work takes a fresh look at IP geolocation data from a
temporal perspective. Specifically, we examine the longitudinal
stability of locations in an IP geolocation database, the
characteristics of location changes when they do occur, and
the extent to which a particular instance of a geolocation

database impacts conclusions that depend on locations. To wit,
network and systems researchers frequently utilize available
IP geolocation database snapshots. However, the date of the
snapshot may only loosely align with the time of the lookup
operation, or the lookups may span multiple snapshots, e.g., a
long-running measurement campaign. We show that snapshots
of the same geolocation database separated even closely in time
can have a non-trivial effect on research results and findings.

For example, across database snapshots in three month
window, we find up to 22% of IP addresses move more than
40km, while coverage (the simple presence or absence of an
address in the database) varies by as much as 18%. Despite
this temporal sensitivity, the date of the geolocation database
snapshot is rarely reported in the academic literature – an
omission that we show confounds scientific reproducibility.

We use 10 years of data from the most popular, publicly
available, and frequently used database: MaxMind [7]. We use
this large collection of snapshots to examine the longitudinal
evolution of its location mappings and address coverage, as well
as to conduct a reproducibility case study. Our contributions
include:

• A survey of how recent systems and networking literature
utilizes and depends on IP geolocation data.

• The first longitudinal study of a widely used IP geolocation
database where we find significant short-term dynamics.

• A case study of prior research that depended on geoloca-
tion, showing that the results fundamentally differ based
on the instance of the geolocation database used.

• Recommendations for the sound use of IP geolocation
data in research.

Our findings provide several tangible lessons for the broader
network research community:

• IP locations in geolocation databases can be highly
dynamic, with non-negligible coverage and movement
differences even over short (< 3 month) time scales.

• Despite this variation, published network research fre-
quently omits specific details of the geolocation snapshot.
Not only does this hinder reproducibility, research results
that depend on IP geolocation can significantly differ978-3-903176-40-9 ©2021 IFIP



depending on the instance of the snapshot used.
• Researchers should ensure they publish details of the IP

geolocation database, align lookups with measurements,
and investigate the sensitivity of their results to different
instances of the database.

II. MOTIVATION

To better understand IP geolocation as used in the network
and systems research community, we surveyed the academic
literature. We performed full-text queries, over all time, on
four popular digital libraries for three common geolocation
databases, MaxMind [7], NetAcuity [12], and IP2Loc [13].
Table I shows the number of papers in each library. MaxMind
is clearly the most popular by an order of magnitude. Therefore
the analysis in the reminder of this work focuses on MaxMind.

A. MaxMind

Founded in 2002, MaxMind is a commercial entity specializ-
ing in IP geolocation and related services. MaxMind offers two
IP geolocation databases, one that is free (GeoLite) and one
that requires a license (GeoIP). The academic literature uses
both GeoLite and GeoIP. GeoLite is available as a complete
database “snapshot’.’ Snapshots are currently updated weekly
and available for public download. GeoLite snapshots contain
variable length IP prefixes, each with an associated geolocation.
The geolocation may include country, city, latitude/longitude,
and accuracy (in km); however many prefixes only provide
a geolocation at the country granularity. This work studies
the IPv4 GeoLite databases. Henceforth, we refer to GeoLite
(and its successor, GeoLite2) informally as “MaxMind” for
simplicity.

B. Survey Methodology

We characterized the use of MaxMind across nine systems,
security and networking conferences during the five year
period from 2016-2020. To find papers in the literature using
MaxMind, as well understand how it is used, we adopt a
semi-automatic method: first, for a given conference venue, we
obtain the complete proceedings and perform a case-insensitive
search for the string “maxmind.” We manually inspect each
paper found to contain “maxmind” to determine whether the
work utilizes the database or is simply referencing MaxMind.
For example, in [14], “maxmind” appears only as a citation
to the sentence “Current IP-based geolocation services do not
provide city-level accuracy. . .” Only those papers that used
MaxMind’s database for their research are included.

Keeping in mind the variety of research questions and
geolocation requirements inherent in the various papers, we
sought to distinguish what was being geolocated and at what
granularity. We manually extract from each paper the granular-
ity required (country, city, or AS) and the type of IP addresses
geolocated (all, end users, end host infrastructure, and router).
The “end user” category contains IP addresses belonging to
residential users (e.g., [15]), or, more broadly, end users issuing
web traffic (e.g., [16]). The “end host infrastructure” category
includes addresses belonging to Internet infrastructure, typically

TABLE I: References to geolocation databases

ACM IEEE arXiv.org Springer
MaxMind 171 373 96 162
NetAcuity 10 10 8 7

IP2Loc 3 3 0 0

web [17], proxies [18], or DNS [19] servers. “Routers” include
the IP addresses of network router interfaces. Finally, the “all”
category contains papers that geolocate all types of addresses
such as [20], [21]. Note that these sets are mutually exclusive,
but a paper can use MaxMind on several types of IP addresses.
For instance, [22] studies the Mirai botnet where the infected
IP addresses can belong to both end users and end host
infrastructure.

C. MaxMind in the Literature

Table II summarizes our findings. We follow the rhetorical
structure of Scheitle et al. [23] to classify the impact of
MaxMind on the paper’s results.

- Affected “Y” are papers that use MaxMind in their
methodology to obtain a result. For example, Papadopou-
los et al. [16] use MaxMind to build a classifier to infer
how much advertisers pay to reach users.

- Affected “V” are papers that do not use MaxMind to
obtain results, but rather to compare their results. For
example, Weinberg et al. [18] compare their inferred proxy
locations to MaxMind’s locations.

The “Date” column indicates whether or not the paper explicitly
provides the MaxMind snapshot date. The last column indicates
which MaxMind version is used: either free, paid or if the info
was not available.

From a macro perspective, MaxMind is both used at country
(53%) and city (37%) granularity. Second, it is mostly used to
geolocate end users (38%) and end host infrastructure (49%)
rather than routers (9%). Then, the majority of papers (86%)
use MaxMind to obtain results, and few (11%) provide the
snapshot date. Finally, we see that free and paid version of
MaxMind are equally used by the community. Note that the
totals do not sum to the number of papers as, e.g., a paper
may use MaxMind for both AS and country information [20],
or use both the free and paid version [1].
Lesson: MaxMind is the most popular geolocation database
to support other research. Further, the results of many papers
may be sensitive to geolocation variation, especially given
the lack of snapshot dates, large windows of measurement or
data, and no explicit alignment between data collected and the
geolocation snapshot.

III. METRICS

This section defines metrics used to characterize the impact
of selecting one geolocation database snapshot rather than a
different snapshot in time. We assume that snapshots contain
IP prefixes and their associated locations. For all IP prefixes,
we expand them to their constituent set of individual addresses.



TABLE II: Literature survey of MaxMind use in academic venues (2016-2020). “Affected” column specifies if MaxMind was
used in methodology (Y) or for validation (V).

MaxMind Affected
Snapshot

date
specified

Free (F)
Paid(P)
(N/A)

Granularity IP type Y V Y N F P N/A
Conference Area Papers AS Country City All End user End host

infrastructure Router

IMC Meas. 16 1 13 3 2 5 8 1 12 4 1 15 8 3 6
PAM Meas. 6 0 2 4 1 3 2 0 5 1 0 6 3 1 2
TMA Meas. 4 1 0 3 3 0 1 0 3 1 2 2 1 2 1
USENIX Sec Security 10 0 7 3 0 4 7 0 10 0 2 8 1 4 5
CCS Security 6 2 1 3 0 1 2 3 6 0 0 6 2 3 1
SIGCOMM Systems 3 0 1 2 0 3 1 0 2 1 0 3 0 3 0
NSDI Systems 1 0 0 1 0 0 0 1 1 0 0 1 0 0 1
CoNEXT Systems 2 1 1 0 1 0 1 0 2 0 0 2 1 0 1
WWW Web 10 0 7 3 0 4 7 0 10 0 2 8 2 2 6
Total All 58 7 30 22 8 22 28 6 51 7 6 52 18 20 23

We define metrics using two concepts for comparing two
geodatabase snapshots: coverage difference and distance distri-
bution. For these definitions:

- Let A be a set of IPv4 addresses (either all address, or a
population e.g., addresses known to be router interfaces).

- Let L be the set of locations present in a geodatabase
(either latitude-longitude pairs, cities, or countries).

- Let M be a snapshot of this database, defined as a set
of pairs (a, l) that map addresses to locations.

- Let AM ⊂ A be the set of addresses that appear in
snapshot M that belong to population A.

A. Coverage difference

Intuitively, coverage difference means the portion of IP
addresses that appear in one snapshot or another, but not both.
Two identical snapshots have a coverage difference of zero
while the coverage difference is one for two snapshots with
no IP addresses in common.

Formally, coverage difference is an extension of the concept
of ‘coverage’, which for snapshot M with respect to a set of
IPv4 addresses A is:

coverage(M) =
|AM |
|A|

(1)

The coverage difference between two snapshots Mi and Mj

on A is the Jaccard distance between AMi
and AMj

:

covdiff(Mi,Mj) =
|(AMi

⋃
AMj

)− (AMi

⋂
AMj

)|
|AMi

⋃
AMj
|

(2)

B. Distance distribution

An address a can appear in a location in one geodatabase
snapshot and different location in a second snapshot. Let
dist(a,Mi,Mj) be the Haversine distance [24] between the
locations of a in Mi and Mj , using latitude-longitude values
for each location. The distance distribution between the two
snapshots is the set of distances, one for each address that
appears in both snapshots:

Ddist(a,Mi,Mj) = {dist(a,Mi,Mj) | a ∈ AMi

⋂
AMj}

(3)

The definitions above serve to define the differences between
two snapshots. Because we are not interested in only comparing
two snapshots, but also knowing the average difference between
two snapshots or the worst case, we need to compare those
differences. For coverage, we can sort the pairs of snapshots by
their Jaccard distance. To compare two distance distributions,
we define the following metric:

distdiff(Mi,Mj) = (mean({log10(dist(a,Mi,Mj))

| a ∈ AMi

⋂
AMj
})

(4)

By taking the mean of the log of the distances, we
prevent outliers (e.g., distances potentially up to 20,000 km)
from disproportionately outweighing lower, but nonetheless
meaningful, distances, e.g., on the order of 100 km.

Note that while the median is a more robust statistic, typically
more than 50% of the address have zero distance, i.e., did not
move between snapshots (§ V-C). Thus, the mean provides a
meaningful non-zero measure. Other metrics that we define
on the distance distributions are the quantiles of a distribution,
along with the maximum value.

For both coverage and distance, the higher the metric, the
larger the difference is between the two snapshots.

C. Distance

Our survey looks at the distribution of distance values per
address. We define the maximum distance of an address a
as being the maximum distance between two of its locations.
Formally, the distribution of distances of a is:

D(a) = {dist(li, lj) : li, lj ∈ La}} (5)

where La is the list of locations of a in a considered set of
snapshots. The maximum distance of a is then:

max(D(a)) (6)



Fig. 1: Hilbert heatmap of maximum distance (Eq. 6) in 2018 (left) 2019 (center) and absolute difference (right) for the entire
IPv4 address space (log scale; each pixel represents a /24). MaxMind exhibits a high degree of global geolocation dynamics
and year-to-year variation.

IV. DATA

A. MaxMind snapshots

We collect 214 MaxMind snapshots spanning the ten year
period from January 2010 to December 2019. There are
two primary challenges in the raw data: (1) the snapshots
we obtain are not uniformly distributed in time; and (2) IP
addresses appear within prefixes of different networks and
lengths over time. To utilize this data within the framework of
our methodology and metrics, we pre-processed it.

1) Sampling the snapshots for time uniformity: Sec. III
assumes a uniform distribution of snapshots in time. Our
evaluation examines a ten year span from 2010-2019. Within
this ten year period, we have at least one snapshot per month,
but sometimes as many as one snapshot per week. Therefore
to ensure uniformity, we simply down-sample so that the ten
year period includes one snapshot per month. Our evaluation
is conducted on this subset of snapshots such that they are
uniformly distributed in time.

2) Prefixes of different lengths: A MaxMind snapshot
contains a mapping of prefix blocks to geolocation. However,
these prefixes may split, be aggregated, or even overlap in time.
While our analysis is at the per-IP address granularity, rather
than prefix, maintaining the geolocation for all IP addresses
over time is inefficient. Our first step then is to find a data
structure to efficiently store and query the snapshots. Over
all prefixes in all snapshots, we construct the set of covering
longest length prefixes and construct a Patricia trie [25]. We
build one Patricia trie for each geolocation granularity: country,
city, and coordinates. The Patricia trie contains, per prefix, all
its locations over the period of time.

To handle prefix variation over time, we insert into the
Patricia trie the longest prefixes seen in the snapshots. The
resulting fine-grained prefixes will be inserted in a database. As

an example, consider the prefix 1.0.0.0/23 located in London
in the snapshot s1. On the other hand, in the snapshot s2, the
prefix 1.0.0.0/24 is located at London and the prefix 1.0.1.0/24
is located at Paris. We place the two /24 prefixes in the trie
for each of the snapshots, London being inserted for the two
prefixes of the snapshot s1.

The prefixes considered in our database therefore do not
necessarily correspond to BGP prefixes nor are the same as
the initial prefixes on MaxMind snapshots. The resulting prefix
lengths vary between /9 and /32, the most common being /29
with 19.2% of the total prefixes.

B. Different types of IP addresses
Sec. II has shown that researchers use MaxMind to locate

three classes of IP addresses: end users, end hosts infrastructure
and routers. We therefore collect and label three sets of IP
addresses corresponding to these three types.

• End users: M-Lab [26] performs and records measure-
ments to end users requesting performance tests (i.e., a
“speedtest”). From the M-Lab public datasets we extract
targets in the year 2019. We randomly sample these
targets to obtain 6.7M IPv4 addresses in approximately
2M unique /24 prefixes.

• End host infrastructure: For end host infrastructure,
we extract the daily top list made available by [23].
We perform an intersection of all 2019 lists in order
to minimize the number of IP addresses that could be
reassigned for other purpose. Because these top lists
are volatile, our filtering for high-confidence end host
infrastructure addresses produces 26,231 IP addresses in
16,942 /24 prefixes.

• Routers: We leverage both CAIDA ITDK dataset [27]
and Diamond-Miner [28] public Internet topology datasets
to collect IP addresses belonging to router interfaces. Both



datasets are the result of Internet-wide traceroute style
probing. We take the intersection of 2019-01, 2019-04
ITDK and 2019-08 Diamond-Miner datasets and obtain
730k IP addresses in more than 177k different /24 prefixes.
By taking the intersection over time, the aim is again to
ensure the likelihood that the addresses indeed belong to
routers.

C. Ethical Considerations

Our work does not involve human subjects, questionnaires, or
personally identifiable information, and, hence, does not meet
the standards for IRB review. The MaxMind data we analyze is
covered by the Creative Commons Attribution-ShareAlike 4.0
International (CC BY-SA 4.0) license which permits adaption
of the database: “remix, transform, and build upon the material
for any purpose, even commercially.” Beginning in January 1,
2020, MaxMind adopted a more restrictive policy in order to
comply with GDPR requirements [29]; our research does not
analyze any data after 2019.

V. EVALUATION

This section presents an evaluation of the MaxMind data
snapshots from 2018 to 2019 using the metrics defined in
the methodology. We examine the extent and impact of both
location movement and coverage across several dimensions.
Primary results are presented here, while a more exhaustive
evaluation, including the full 10 years of longitudinal data, is
available in an accompanying technical report [30].

A. Limitations

Our primary contribution in this work is to define metrics
that characterize the dynamics of IP geolocation databases, and
understand how these dynamics can impact network research
that depends on geolocation. We keenly recognize that location
changes within the database may be genuine or may be artifacts
of the geolocation system’s methodology. We do not investigate
the root causes of the dynamics we observe. Indeed this
limitation is fundamental – MaxMind’s algorithm is proprietary
so that we cannot provide true causal analysis. Rather, we focus
on providing lesson for how researchers should view and utilize
geo-databases.

B. Visualizing Internet-wide geo movement

Fig. 1 shows an exhaustive representation of the maximum
distance change for each /24 of the entire IPv4 space for 2018
and 2019, as well as the absolute difference between the two
years. Each pixel represents a /24, and the color represents
the maximum distance between two locations; black pixels
indicate that the IP address is not present in the database. If the
/24 contains more specific entries in the MaxMind database,
we take the maximum of the maximum distance of the IP
addresses within the /24.

We see that the visualization of 2019 differs from 2018:
Many of the various registries in the bottom center right and
top left part of the plots have a maximum distance of more
than 1000km in 2018, whereas they did not move in 2019.

There is also a red square in the prefixes belonging to Level3,
that had a maximum distance of 20,000km in 2018 but did not
move in 2019. Surprisingly, there are also some IP addresses
that were covered in 2018 (i.e., in this case, having lat/long
coordinates) which are not covered in 2019. This is the case
of some blocks of IP addresses in the bottom center left of the
graph belonging to APNIC and AFRINIC.

All these differences between the two years are highlighted
by the map on the right: we clearly see the center and the
bottom left mainly colored in orange and red as well as some
big prefixes on the top right. It reveals a significant dynamic
change not only along the prefixes but also through time.

Overall, by looking at the Hilbert representations of each
year over the 10 years dataset, it is difficult to perceive a trend
that could lead us to say that prefixes are experiencing bigger
or smaller distance change over years.
Lesson: These visualizations confirm not only the high degree
of global geolocation dynamics, but also the presence of year-
to-year variation in geolocation movement. An IP address
can experience a maximum distance change of 0km in 2018
and more than 1000km in 2019, and vice versa.

C. Impact

While the preceding analysis demonstrates how our metrics
can shed light on the underlying dynamics of a geolocation
database, we conclude this section with an analysis of the
potential impact of selecting a particular snapshot of MaxMind
versus a different snapshot, for instance as a researcher seeking
to geolocate a population of IP addresses under study. To bound
our results, we compare pairs of snapshots from 2019 within
three time windows: when the snapshots differ by less than 3
months, between 3 to 6 months, and between 6 to 12 months.
We evaluate the impact across the three IP classes: end users,
end host infrastructure, and routers.

1) Coverage (Fig. 2): For coverage we show results at the
city level as we find no country level coverage differences
between snapshots; almost all IP addresses, across all classes
of addresses, have a country geolocation present in the database.

Not unexpectedly, for all types of IP addresses, we observe
that the coverage difference increases with time between the
two snapshots. As shown in our tech report (Fig.5 of [30]),
the overall coverage is globally constant, therefore this cannot
be imputed to an increase of the total coverage.

We see that even for two snapshots created within less than
three months of each other, there is a significant coverage
difference, up to 6%, 11% and 20% for end users, end host
infrastructure and routers respectively. As seen in Fig. 2c, there
is a 50% probability of more than 12% coverage difference
between two snapshots created less than three months apart.
Between two snapshots of more than six months and less than
a year, the difference can be even worse, up to 9%, 17% and
30%.

2) Distance (Fig. 3): We first sort the pairs of snapshots
by the metric defined in Eq. 4, the mean of the logarithmic
distances (MLD). Recall, the higher the MLD, the more the
snapshots differ. We compute distance across pairs of snapshots
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Fig. 2: Comparing pairs of database snapshots by city coverage difference (Eq. 2). Across all classes of IP addresses, there are
significant coverage differences, even on among snapshots closely separated in time.
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Fig. 3: Comparing pairs of database snapshots by IP address distance difference (Eq. 3). Up to 22% of addresses move more
than 40km among snapshots in a three month window.

within the same time ranges as for coverage: less than three
months, between three and six months, and between six and
twelve months. From the MLD distribution, we then show the
pair of snapshots corresponding to the median. For example,
in Fig. 3a, one should read: On the end users dataset, 15% of
the IP addresses moved by at least 40km. This corresponds
to the median result for a pair of snapshots that are less than
three months apart.

Fig. 3 shows two trends. First, as one might expect, for all
types of IP addresses, the more time between two snapshots,
the more IP addresses move. Then, the percentage of IP
addresses moving depend on the type of IP addresses. We
observe that end users tend to move more than routers and end
host infrastructure. In details, for a pair of snapshots that are
more than six months apart, we have 28%, 8% and 18% of
IP addresses that move more than 40km for respectively end
users, end host infrastructure, and routers.

If we consider that 40km corresponds to most metropolitan
areas [1], this implies that a non-trivial portion of IP addresses
experience a location change out of the metro area – a
significant change. However, distances greater than 1000km
are rare, accounting for less than 5% of IP addresses across
all addresses classes.
Lesson: There are non negligible differences in both coverage

and distance of movement even for database snapshots created
closely in time (< 3 months). Therefore: we recommend,
insofar as possible, aligning geolocation database snapshots
with the measurements that produced them, for instance
by programmatically using an API to lookup IP addresses on-
demand as they are gathered. Further, one should look at several
snapshots closely spaced in time over the measurement period
and more deeply investigate IP addresses that experienced
significant changes.

D. A longitudinal study

Due to space constraints, we leave the 10 year longitudinal
study for our accompanying tech report [30] and associated
research [31]. In this paper, we define new metrics and extend
the ones defined in Section III to enable the comparison of an
arbitrary number of snapshots and the analysis of the dynamics
of the geolocation of an IP address over time. One of the
main results is that we find that a majority of IP addresses are
mapped to at least two locations far from 40 km (a metropolitan
area) within a year, with a high variance depending on the
country and the type of IP address. This reinforces our call to
be very cautious about the usage of MaxMind when data are
collected during a period longer than few weeks.



VI. USE CASE

Previous sections have shown two things. MaxMind is a
widely used database (Sec. II), and selecting a particular
snapshot in a time period can have a significant impact on the
results (Sec. V). In this section, we concretely demonstrate
the potential impact on research that depends on MaxMind
by reproducing the results from Gharaibeh et al.’s IMC 2017
work [1] with different MaxMind snapshots. Gharaibeh et al.
study the accuracy of different databases for router geolocation,
including MaxMind. Using the author’s publicly available
ground truth, we reproduce their accuracy results (see Sec.
5.2, Fig. 2 of [1]).

Surprisingly, the MaxMind snapshot that produces the largest
impact on the results was created within only two months of
the snapshot used by the authors. This snapshot shifts the
median of the distance distribution to ground truth from more
than 100 km to 40 km, which is close to the results of the paid
version. Given this variability, the claim that the free version
of MaxMind is worse than the paid version seems to depend
on the specific instance studied.

A. Dataset

The Gharaibeh dataset consists of 16,586 router interface IP
addresses with corresponding ground truth locations inferred
either with RTT-based measurements or DNS-based techniques.
The authors do not mention which specific snapshot of
MaxMind they used, however: “The databases are accessed
again on early July 2016, to geolocate the ground truth.” We
inquired with the authors for the exact snapshot date, but
unfortunately they could not be more specific. We therefore
select the closest snapshot as our reference, from July 8, 2016.
Sec. VI-B confirms that the results of this snapshot are very
close to those presented in the original paper.

The measurement period for the ground-truth collection and
validation, however, spanned a larger time period. As stated
in the paper: “Overall, between May 2016 and September
2017, 8,197 (69.1%) [...] have different hostnames, and 6.9%
no longer have rDNS records.” We therefore restrict our
comparison between snapshots belonging to this period of
time, on which the authors consider that the ground truth is
valid.

B. Results

1) Distance to ground truth: We compute the distance
to ground truth distribution of all the snapshots from May
2016 to September 2017. We then compare each of these
distributions to the distribution of the reference snapshot, using
the Kolmogorov-Smirnov (KS) test [32]. The KS test quantifies
the dissimilarity between two distributions, with higher values
indicating less similarity. Fig. 4a shows the distance to ground
truth distribution of the snapshots corresponding to the 5th,
25th, 50th, 75th, and 100th percentiles of the KS distribution.
We also show the reference snapshot.

First, we compare Fig.2 of Gharaibeh et al. with our reference
snapshot. We infer that on Fig.2 of Gharaibeh et al. ∼8%, 47%,
50%, 55%, and 96%, are located at less than respectively 1,

40, 100, 1,000, and 10,000km from the ground truth, whereas
it is 8%, 46%, 49%, 56% and 97% in our reference snapshot.
Overall, the qualitative shape of the distribution is identical
to the original figure, giving us confidence in our ability to
reproduce the author’s results.

However, we observe significant differences between results
derived from the other snapshots versus the reference. The
median shifts from 167km in the reference snapshot to
respectively 57, 51, 41, 40 and 40km for the 5th, 25th, 50th,
75th and 100th percentile.

When we consider the snapshots dates with these percentiles,
it is surprising to observe that the 100th percentile was created
only two months after the reference snapshot, whereas the 5th
percentile is a snapshot taken one month later and the 25th
percentile corresponds to a snapshot taken nine months later.
This implies that MaxMind did not improve over time for these
addresses, but also that there are significant differences in the
results within a relatively short time.

Finally, we look at the comparison between the free and
paid version of MaxMind. On Fig.2 of Gharaibeh et al. we
infer that the paid version has a median between 30 and 40km,
so that the difference between this distribution and the different
snapshots of Fig. 4a is less pronounced than the difference
between the free and paid version of their graph. Therefore
the conclusion that the paid version performs better than the
free one should be taken with caution.

2) Coverage: Finally, we examine coverage variability. In
Gharaibeh et al., the authors only compute the distance to
ground truth if the IP address is covered by MaxMind at the
city level.

Fig. 4b shows the distribution of the coverage difference
(Eq. 2) as we did in § V-C1, but only comparing snapshots with
the reference snapshot. We observe that even with snapshots
taken three months apart from the reference snapshot, 30% of
the snapshots have more than 10% of coverage difference. It
is even worse for snapshots between 3 and 6 months and
snapshots with more than 6 months of difference, with a
coverage difference up to 30%.
Lesson: Work is being published in the network research
community without specifying the MaxMind snapshot dates.
Had the authors used a different snapshot, the set of IP
addresses over which they would have computed their accuracy
measures – and, hence, their results – would have significantly
changed.

VII. RELATED WORK

Mapping IP addresses to the physical world is an important
topic that has seen two decades of research. Early efforts used
landmarks, hosts with known position, to assign locations to
unknown targets at coarse granularity [5]. Landmark-based
geolocation was subsequently enhanced to use latency con-
straints [9], network topology [2], and population densities [10]
to improve accuracy. Because the accuracy of latency-based
techniques is often proportional to the distance between
the target and its nearest landmark, Wang et al. developed
techniques to find and utilize additional landmarks [4].
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Fig. 4: Reproducing result of [1] with different snapshots demonstrates the sensitivity of the results to the instance of the geo
database. The median distance of addresses used shifted over 100km and coverage differed by up to 30%

IP geolocation has since matured, with several competing
commercial offerings including [6], [7], [8]. While the exact
methodology of these commercial services is proprietary, they
likely use a combination of databases (e.g., whois and DNS),
topology, latency, and privileged data feeds from providers [11].

Even so, the inference-based nature of IP geolocation imparts
errors and inaccuracies even in commercial databases [3], [33].
demonstrated by several prior analyses. For instance, Poese et al.
found 50-90% of ground-truth locations to be geolocated with
greater than 50km of error [34]; most recently Komosnỳ et al.
studied eight commercial geolocation databases and found mean
errors ranging from 50-657km [35]. Geolocation of network
infrastructure, including routers, is known to be particularly
problematic [36], [1]. However, as shown in Sec. II, MaxMind
is still widely used, for the simple reason that there exists no
other alternative than geolocation database to get an Internet
scale IP geolocation mapping.

Our work looks at IP geolocation through a novel lens
by analyzing the longitudinal characteristics of a popular
geolocation database. By showing the stability of locations
at different granularities and timescales, we offer a first look at
the error bounds for particular classes of applications that utilize
geolocations, as well as offer practical lessons for consumers
of IP geolocation data.

VIII. CONCLUSION

Physical mapping of Internet hosts and resources is critical
in this day and age. Techniques to perform IP geolocation
have matured into commercial offerings. While the accuracy of
these geolocation databases has been extensively studied, little
attention has been paid to understand the way they have evolved
over time. Our work demonstrates that a commonly used
geolocation database, MaxMind, exhibits significant changes
in address coverage and locations, especially when considering
particular subsets of addresses.

These changes can occur even on short timescales, including
on the order of a typical measurement study duration. In this
way we highlight the importance of geolocation lookups that

are contemporaneous with the time an IP address is measured,
observed, or gathered. Via a case study, we demonstrate the
potential for a large discrepancy in results depending on
the particular date of a geolocation snapshot. Similar large
variances in auxiliary data sources at short time scales have
been demonstrated in the past, e.g., for DNS and Internet top
lists [23]. Thus, a take-away of our work is to encourage align-
ment of geolocation lookups with measurements, publishing the
exact date of a geolocation snapshot or lookup methodology,
and rigorously investigating addresses that change geolocation
significantly over the course of a measurement study. In the
spirit of similar measurement best practices [37], we hope to
encourage more sound and reproducible measurement research.
Because MaxMind does not provide access to historical data,
we provide historical snapshots on demand to the community.

In future work, we plan to more deeply investigate the root
causes of the geolocation movement we observe, characterize
IPv6 geolocation, and work toward integrating our findings
into more robust geolocation services.
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