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The Case for Latency Prediction
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Latency Prediction (again?)

 Significant prior work:

— King [Gummandi 2002]

— Vivaldi [Dabek 2004]

— Meridian [Wong 2005]

— Others... IDMaps, GNP, etc...
* Prior Methods:

— Active Queries

— Synthetic Coordinate Systems
— Landmarks

e Our work seeks to provide an agent-centric
(single-node) alternative
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Why Predict Latency?

1. Service Section: balance load, optimize
performance, P2P replication

2. User-directed Routing: e.g. IPv6 with per-
orovider logical interfaces

3. Resource Scheduling: Grid computing,
etc.

4. Network Inference: Measure additional
topological network properties
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An Agent-Centric Approach

Hypothesis. Two hosts within same sub
network likely have consistent congestion and
latency

Registry allocation policies give network
structure — but fragmented and discontinuous

Formulate as a supervised learning problem

Given latencies to a set of (random)
destinations as training:

— predict_latency(unseen [P)
— error = |predict(IP) — actual(IP)|
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The Case for Machine Learning
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Why Machine Learning?

Internet-scale Networks:
— Complex (high-dimensional)
— Dynamic

e Can accommodate and recover from
Infrequent errors in probabilistic world

 Traffic provides large and continuous
training base
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Candidate Tool: Support Vector Machine

Supervised learning (but amenable to online
learning)

Separate training set into two classes In most
general way

Main insight: find hyper-plane separator that
maximizes the minimum margin between convex
hulls of classes

Second insight: if data is not linearly separable,
take to higher dimension

Result: generalizes well, fast, accommodate
unknown data structure
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SVMs — Maximize Minimum Margin

® —positive examples
© =negative examples
/\=support vector

Most Simple Case:
2 Classes in 2 Dimensions
Linearly Separable
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SVMs — Redefining the Margin

® =positive examples
© =—negative examples

The single new positive
examples redefines margin
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Non-SV Points don’t affect solution

O, ® =positive examples
© =—negative examples
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|IP Latency Non-Linearity

e =200ms examples
© =10ms examples

IP Bit 1

IP Bit O
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Higher Dimensions for Non-Linearity

e =200ms examples

vad
72, 27 © =10ms examples

’
' ’
| ’
. ’
’
L7 @ ' . (@)
~a= = ,
SS ! ’
~< | ’

2 Classes in 2 Dimensions
NOT Linearly Separable
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Kernel Functiond

e =200ms examples
© =10ms examples

2 Classes in 3 Dimensions
Linearly Separable
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Support Vector Regression

e Same Idea as classification
e c-Insensitive loss function
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Data and Methodology
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Data Set

« 30,000 random hosts responding to ping
* Average latency to each over 5 pings
* Non-trivial distribution for learning
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Methodology

# IP Latency # IP Latency

Train

Data Set Permute Order

Test

e Average 5 experiments:
— Randomly permute data set
— Split data set into training / test points
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Methodology

# IP Latency # IP Latency
Build SVM Train
Permute Order T
Measure
Test
Performance

e Average 5 experiments:
— Training data defines SVM
— Performance on (unseen) test points
— Each bit of IP an input feature
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Results
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Results

e Spoller: So, does it work?

e Yes, within 30% for more than 75% of
predictions

e Performance varies with selection of
parameters (multi-optimization problem)
— Training Size
— Input Dimension
— Kernel
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Training Size
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uestion: Are MSB Better Predictors

e Determine error versus number most
significant bits of test input IPs
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uestion: Are MSB Better Predictors

e Determine error versus number most
significant bits of test input IPs
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Feature Selection

e Use feature selection to determine which
Individual bits of address contribute to
discriminatory power of prediction

6, — argmin V(f(8,x),y) Vx !€ 6,,....8,,
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Feature Selection
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Feature Selection
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Performance

* Given empirically optimal training size and
Input features

 How well can agents predict latency to
unknown destinations?
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Predicted Latency {ns)

aB0

4808

1011

280

1808

Prediction Performance

N
A,

1] 184 2808 30a 480 ada

Heasured Latency {ns)

|deal

30



Prediction Performance
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Prediction Performance

Within 30% for >75%
of Predictions
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Going Forward

SIGCOMM MineNet06 33



Future Research

 How agents select training data (random,
BGP prefix, registry allocation, from TCP
flows, etc)

 How performance decays over time and
how often to retrain

* Online, continuous learning
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Summary - Questions?

 Major Results:
— An agent-centric approach to latency prediction

— Validation of SVMs and Kernel Functions as a
means to learn on the basis of Internet
Addresses

— Feature Selection analysis of IP address
Informational content in predicting latency

— Latency estimation accuracy within 30% of true
value for > 75% of data points
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Prediction Accuracy
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Prediction Accuracy

Fraction of Predictions
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Prediction Accuracy
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