
RTG: A Scalable SNMP Statistics
Architecture for Service Providers

Robert Beverly – MIT Laboratory for Computer Science1

ABSTRACT

SNMP is the standard protocol used to manage IP networks. Service providers often analyze
the utilization statistics available from SNMP-enabled devices to make informed engineering
decisions, diagnose faults and perform billing. However collecting and efficiently storing large
amounts of time-series data quickly, without impacting network or device performance, is
challenging in very large installations. We identify three crucial requirements for an SNMP
statistical solution: (i) support for hundreds of devices each with thousands of objects; (ii) the
ability to retain the data indefinitely; and (iii) an abstract interface to the data. We then compare
the applicability of several tools in a service provider environment. Finally, we detail Real Traffic
Grabber (RTG), an application currently in use on our national IP backbone which we developed
in lieu of existing packages to meet our requirements.

Introduction

Data traffic statistics are valuable in all networks,
but are particularly crucial in service provider and
enterprise environments. Not only is the data used to
make informed engineering decisions such as traffic
engineering, capacity planning and over-subscription
analysis, it is also used for denial-of-service tracking,
billing and policy purposes. The Simple Network
Management Protocol (SNMP) [4] is the standard pro-
tocol used for fault detection, diagnostics, device man-
agement and statistics gathering in IP networks. While
the protocol mechanisms themselves are ‘‘simple,’’ the
process of continually collecting, retaining, reporting
and visualizing SNMP statistics data presents unique
constraints in very large network installations.

Wo r l d c o m is a large service provider with many
disparate data networks and equally varied manage-
ment systems. The particular Worldcom network we
monitor is a national OC-48c (2.5 Gbps) backbone that
has grown to approximately 110 devices each with an
average of 100 interfaces. Scalability problems regu-
larly plague service providers and other large networks
scrambling to keep up with growth. The legacy sys-
tems gathering SNMP interface utilization statistics
from our network were no exception and faced severe
performance problems to the extent that they were
unusable. Simultaneously, new requirements to moni-
tor additional per-interface statistics emerged along
with a need to generate various custom reports.

At a minimum, we needed a new system that
could record bytes, packets and errors for every inter-
face in the network with a five-minute granularity. The
system must also produce long-term (multiple-year)
trends and reports and keep detailed usage information
for billing and legal purposes. We identified three high-
level requirements for our new system: the ability to (i)

1The initial research was completed while with Worldcom.

scale the statistics infrastructure to support hundreds of
devices each with thousands of objects; (ii) retain the
data indefinitely; and (iii) provide an abstract interface
to the data. These requirements motivated the develop-
ment of Real Traffic Grabber (RTG).

RTG is a flexible, scalable, high-performance
SNMP statistics monitoring system. All collected data
is inserted into a relational database that provides a
common interface for applications to generate com-
plex queries and reports. RTG has many unique prop-
erties including: it runs as a daemon incurring no cron
or kernel startup overhead, it is written entirely in C
for speed incurring no interpreter overhead, it is fully
multi-threaded for asynchronous polling and database
insertion, it performs no data averaging and it can poll at
sub-one-minute intervals. RTG runs in production on
several networks and has proved to be an invaluable tool.

In this paper we first compare the applicability of
various open-source tools and solutions in a service
provider statistics environment. Next we detail the
implementation and operation of RTG. We then pre-
sent performance data measured for various monitor-
ing platforms including RTG. Finally, we present
graphs and reports unique to RTG. The paper con-
cludes with availability information and suggestions
for future development.

Survey of Existing Monitoring Applications

There are many open-source tools for gathering
SNMP data; CAIDA2 maintains an excellent list of
Internet measurement tools [3]. We experimented with
several of the most popular applications and while
they were ideal for many circumstances, none fulfilled
our complete requirements.

A widely popular open-source application for
visualizing link traffic is the Multi Router Traffic

2Cooperative Association for Internet Data Analysis,
http://www.caida.org

2002 LISA XVI – November 3-8, 2002 – Philadelphia, PA 167

RTG: A Scalable SNMP Statistics Architecture for Service Providers Beverly

Grapher (MRTG) [7, 8]. MRTG is a Perl script that
reads a configuration file and SNMP polls the listed
devices. An external C program adds the result to an
ASCII log file and then produces a series of traffic
plots and corresponding HTML code. MRTG assumes
that as the data ages, the importance of detailed infor-
mation diminishes proportionately. Subsequently,
MRTG implements a lossy storage mechanism
whereby multiple older samples are averaged into a
single data point representative of the entire time
period to ensure a fixed-size database.

Tool Advantages Disadvantages Primary Use
MRTG Ease of setup and maintenance,

friendly web output, large user
base

Performance problems
for large networks,
lacks flexibility and
external interfaces

Small networks requir-
ing only traffic plots

Cricket with RRDtool Highly configurable, web out-
put, high performance, large us-
er base

Averages samples, in-
curs Perl and cron
overhead

Mid-to-large networks

RTG Very-high performance with
asynchronous threaded polling,
uses SQL database for applica-
tions to generate complex
queries and reports, supports
sub-one-minute polling inter-
vals, runs as a daemon

Requires external
packages (Net-SNMP
and MySQL), complex
to configure, steep
learning curve

Large-to-very large
networks that require
traffic plots, advanced
reports, no data aver-
aging and indefinite
data storage

Table 1: Comparison of select SNMP statistics monitoring tools.

The primary advantages of MRTG are its ease of
setup and use and friendly web output. While the visu-
alization piece was excellent, MRTG was not suitable
for our environment for several reasons. With such a
large network, MRTG could not poll and process all of
the objects in the network within a five-minute inter-
val. A MRTG process that did not complete on time
led to multiple MRTG processes piling up, as MRTG
is forcibly invoked via cron each sampling interval,
exacerbating the speed problem further. The MRTG
performance problems are due to its use of a flat
ASCII log file, sequential SNMP polling and insis-
tence on generating a new graphic image (either GIF
or PNG) for each object every five-minutes. We exam-
ine the performance characteristics of MRTG in detail
in a subsequent section. A second disadvantage with
MRTG lies in its use of a fixed size database which
guarantees decreasing resolution with time and the
eventual discard of old samples. Further, the ASCII
log file is difficult for other applications to interface
with or correlate to a particular set of customers easily.

In response to the performance issues in MRTG,
the primary MRTG author created the Round Robin
Database tool (RRDtool) [6] which re-implements the
lossy storage technique found in MRTG in a pure
binary format for speed improvements. RRDtool also
offers much more flexibility than MRTG, allowing
multiple data sources per archive, varying time resolu-
tions and non-integer values. The graphing facilities are
similarly flexible, now allowing on-demand graphs for
arbitrary time periods and the ability to draw multiple

data sources simultaneously. The redesign, however,
does not address the data gathering (SNMP polling)
aspect of the performance problem and does not meet
our requirement to retain all data samples indefinitely.

Cricket [1] is designed to provide a manageable
interface to RRDtool; its hierarchical configuration tree
using inheritance works particularly well for large net-
works. Cricket is a set of Perl scripts that gather infor-
mation about the network topology, set up RRDtool
properly, and use the Perl SNMP module [5] to collect
statistics. The end result is a set of easy to navigate web
pages with RRDtool traffic plots similar to those pro-
vided by MRTG. We were impressed by the ease of
configuration and useful web output of Cricket. While
Cricket combined with RRDtool offers impressive flex-
ibility and speed, we desired a more generic interface to
the data and felt that there were more speed improve-
ments to be had. Cricket with RRDtool still incurs cron
and Perl interpreter overhead, sequentially polls devices
and averages data samples.

Table 1 summarizes the advantages and disad-
vantages of the open-source tools we evaluated and
the primary use of each. We include RTG in this table
for comparison. While MRTG, RRDtool and Cricket
are appropriate for different environments, none met
our performance or collection criteria. Schemes that
perform long-term averaging can hide link peculiari-
ties important to engineering. Based on the availability
and relative low cost of fixed disk storage, our design
constraint was to keep long-term data indefinitely
without averaging. We also recognized that it was
impossible to anticipate every user or application that
would need access to the data. Thus, we wanted as
abstract and open of an interface to the data as possi-
ble. The creation of RTG was motivated by the lack of
suitable open-source tools and the inflexibility of
available commercial solutions.

RTG Implementation

From our base requirements as a large service
provider and our experience with other SNMP statistics

168 2002 LISA XVI – November 3-8, 2002 – Philadelphia, PA

Beverly RTG: A Scalable SNMP Statistics Architecture for Service Providers

packages, we developed RTG. RTG is comprised of rtg-
poll (a polling daemon), rtgplot (a plotting program),
rtgtargmkr.pl (a network configuration parser), a collec-
tion of Perl reporting scripts and a set of PHP scripts to
provide a web interface.

description (char)

name (char)rid (int)

dtime (datetime) count (bigint)iid (int)

status (bool)description (char)speed (int)iid (int)

rid (int) pop (int)

ifInOctets_xxx/ifOutOctets_xxx

router

interface

Figure 2: RTG database schema.

mysql> SELECT * FROM ifInOctets_9 WHERE iid=117
AND dtime>’2002-07-14 18:50’ ORDER BY dtime LIMIT 3;

+------+---------------------+---------+
| iid | dtime | counter |
+------+---------------------+---------+
117	2002-07-14 18:51:16	5092874
117	2002-07-14 18:56:23	5857165
117	2002-07-14 19:01:25	4762324
+------+---------------------+---------+

Listing 1: MySQL query illustrating use of the RTG schema.

The RTG system centers around the polling dae-
mon, rtgpoll. To provide the highest performance possi-
ble, the poller is written in C and runs as a daemon, uti-
lizing less memory and fewer processor resources. Fur-
ther, to allow asynchronous parallel querying and pre-
vent any single query from blocking other polls, rtgpoll
is fully multi-threaded A thread per SNMP query is
used such that the poller maintains a constant number
of ‘‘queries in flight,’’ greatly improving performance.

An often overlooked performance problem lies
in the network devices themselves. The SNMP agent
on many IP devices consumes significant resources in
response to queries, particularly when many objects
are polled. To equalize the query load and prevent
device CPU starvation which may inadvertently cause
routing problems or service instability, RTG random-
izes the target list before polling. In this manner, even
if the target file lists devices sequentially, rtgpoll
SNMP queries individual object identifiers (OIDs) of
the devices at random. Whereas our previous SNMP
management software inflicted noticeable CPU spikes
on the network devices, no spikes are evident with this
scheme. An added benefit to this randomization strat-
egy is that should a device be physically down or
unreachable, all of the rtgpoll threads will not block
waiting for the device query to timeout. Thus, a single
device that is unreachable has little or no impact on
the overall RTG poll cycle time.

The rtgpoll program reads a master configuration
file, rtg.conf, and a target file. The configuration file
contains general RTG parameters while the target file
contains the list of SNMP targets, SNMP communities,
OIDs, SQL tables and other information. An auxiliary
Perl script included in the RTG distribution, rtg-
targmkr.pl, maintains the target file and ensures that the
interface information in the database is kept up to date.
rtgtargmkr reads a list of devices, SNMP fetches each
interface name, description and speed, and maintains
database consistency. For instance, the SNMP interface
identifier for a particular interface can change between
network device reboots or after adding a new interface
to a network element. The rtgtargmkr script manages
these changes and detects new interfaces or interface
description changes. The target list is re-read when rtg-
poll traps the UNIX HUP signal, allowing for dynamic
reconfiguration without restarting the daemon. We run
rtgtargmkr periodically via a cron job and then send rtg-
poll a HUP signal so that RTG always maintains an
accurate view of the network.

Each target is SNMP polled at the interval speci-
fied in the rtg.conf file and the result is inserted into a
MySQL [11] database. We chose MySQL because it is
open source, very fast, portable, has a large installed
user base and has multiple application programming
interfaces (APIs), including C, PHP, Perl. While it is
technically feasible to use other databases, for instance
for users with existing database infrastructure, this
would require significant reprogramming of RTG. We
are very pleased with the performance and stability of
MySQL for RTG and have seen little interest in using
other databases. Figure 1 presents a functional dia-
gram of the RTG system.

2002 LISA XVI – November 3-8, 2002 – Philadelphia, PA 169

RTG: A Scalable SNMP Statistics Architecture for Service Providers Beverly

RTG can poll either 32 or 64-bit integers and
gracefully handles counter wrap and anomalous val-
ues. Counter wraps are detected when the SNMP
result is less than the previous SNMP result from the
last sample interval for a particular OID. When RTG
encounters a counter wrap, the database insert value is
calculated as either

(232 − last_value) + current_value
or

(264 − last_value) + current_value
depending on the OID integer size. Unfortunately, in
practice some counter wraps are not legitimate. Often
if a device is rebooted between polling intervals, the
SNMP value returned after the reboot will be less than
the previous value RTG maintains. RTG eliminates
these bogus data points by defining a configurable
out-of-range value above which rtgpoll will never
attempt an insert into the database. The out-of-range
value is typically configured as a multiple of the maxi-
mum number of bytes possible in the defined interval
on the highest speed link.

MySQL

Configuration
Parser

(rtgtargmkr.pl)
Network

rtg.conf

rtgpollTarget List

Figure 1: RTG system functional diagram.

To meet the long-term storage requirement, RTG
utilizes the MySQL database in combination with a
highly efficient database schema. Every effort was
made to minimize the amount of data that must be
stored and maximize performance. We observed that
most reporting and analysis applications are interested
in router or interface specific data for a particular
object, such as byte counts, over a time range. In order
to minimize the amount of data any single query
would have to process, minimize the amount of data
stored and to segment the data as much as possible, we
created a SQL table per unique device and object.
Each table name contains the device identifier (rid),
i.e., ifInOctets_9. In this unconventional fashion, the
table name becomes significant as a unique index.
Each of these tables contains only interface identifica-
tion (iid), date/time and count columns. The table is
further indexed by the date/time (dtime) column. Two
additional tables provide router and interface index
identifiers (rid and iid) as well as descriptions and
names. The database schema is illustrated in Figure 2.

A potential drawback to this schema is that each
device requires five tables corresponding to five or
more files on the MySQL system. Because of this, the
maximum number of devices is bounded by the oper-
ating system and MySQL’s ability to speedily handle

many files. Despite this limitation, this method has
allowed us to retain more than two-years of complete
data for over 100 devices without performance impact;
reports for old data are generated as quickly as reports
for new data. While different schemas may be more
appropriate for other installations, this database
schema provides the highest performance in our net-
work. It is important to note that RTG does not impose
any requirement to use this schema. In fact, the RTG
table names are completely configurable in the target
list file. For instance, some installations choose to use
only five tables total corresponding to input and out-
put octets, packets and errors.

Using the aforementioned schema for each unique
network element, the interface identifier (iid), times-
tamp and difference between the last SNMP sample and
the current poll are inserted into the network element’s
unique table. Assume that a user has identified a device
and interface of interest based on the device and inter-
face descriptions in the RTG database. If the device and
interface in question are rtr1.someplace with a router
identifier (rid) of 9 and interface id (iid) 117 respec-
tively, Listing 1 shows the MySQL query (limited to
the first three rows) to gather ifInOctet data.

Thus, only the absolute minimum amount of data
is stored in the database preserving speed and storage
space. On one production MySQL server, RTG is using
approximately 5.5 GB of data and 3.9 GB of index
space (total of 9.4 GB) to store two-years of data.

We do not enforce any data periodicity in the
database; it is the responsibility of the application to
determine the total time elapsed between subsequent
samples for any given table and interface should the
application need to calculate traffic rates. RTG does
not record rates, only absolute counts. In the previous
example query, an application would calculate the rate
as
4,762,324 Octets/302 sec = 15.8 KBps = 126.2 Kbps .

Finally, RTG’s high-performance has the added advan-
tage of allowing sub-minute polling intervals for
instances where high sample granularity is required.
We present a real-world example of the utility of sub-
minute polling in the RTG Reports section.

Performance Evaluation

Because performance is a central component of
RT G , we evaluated RTG, MRTG and Cricket for speed.
All tests were performed on a dual 360 MHz Sun Ultra
60 workstation running the Solaris 2.7 operating sys-
tem. We used the UNIX time command to observe the
total execution time, user CPU and system CPU times
for each application. We measured the performance five
times and then took the simple mean of the five test
runs. Each application’s CPU utilization is presented in
Ta b l e 2. While MRTG and Cricket use significantly
more processor cycles than RTG, this data does not

170 2002 LISA XVI – November 3-8, 2002 – Philadelphia, PA

Beverly RTG: A Scalable SNMP Statistics Architecture for Service Providers

include the CPU utilization of RTG’s MySQL server.
Despite this, MySQL RTG CPU usage has never been a
practical limitation in production environments and we
note that it is possible to run the RTG polling daemon
and the MySQL database on separate physical machines
if needed.

Application Targets User CPU (s) System CPU (s) CPU %

MRTG 1618 113.8 19.0 36.1
Cricket 2010 21.3 0.7 25.1
RTG 2255 1.3 0.7 0.6
RTG-threads 3650 1.7 1.1 0.8

Table 2: Application CPU utilization.

Application Target’s Run Time (s) Sec/Target Targets/Sec Max Targets in 5 min

MRTG 1618 365.4 0.23 4.43 1328
Cricket 2010 87.8 0.04 22.89 6868
RTG 2255 77.6 0.03 29.06 8717
RTG-threads 3650 34.2 0.01 106.73 32018

Table 3: Application performance.

Traffic Daily Summary
Period: [01/01/1979 00:00 to 01/01/1979 23:59]

Site GBytes In GBytes Out MaxIn(Mbps) MaxOut AvgIn AvgOut
--
rtr1.someplace:
so-5/0/0 384.734 360.857 49.013 43.420 35.630 33.426
so-6/0/0 357.781 421.736 42.923 50.861 33.137 39.053
t1-1/0/0 0.054 0.058 0.005 0.006 0.005 0.005
rtr3.someplace:
so-6/0/0 1,115.258 1,246.163 168.776 172.690 103.173 115.439
so-3/0/0 1,142.903 1,028.256 152.232 162.402 105.863 95.142
so-7/0/0 152.824 199.742 22.052 35.005 14.152 18.488

Listing 2: RTG summary traffic report.

The application performance data is presented in
Ta b l e 3. Because in normal operation RTG runs contin-
uously as a daemon, we modified the code to exit after
five polling cycles thereby allowing us to use the UNIX
time utility. The data shows that Cricket with RRDtool
is far superior to MRTG. Cricket and a non-threaded
version of RTG are comparable in speed, although RTG
uses fewer CPU resources. Finally, the multi-threaded
version of RTG is by far the fastest application in the
group achieving approximately 107 targets per second
in our testing. Assuming the traditional five-minute
sample interval, this yields a theoretical maximum of
32,000 OIDs monitored on a single RTG system before
saturation, almost five times as many as Cricket and
twenty-four times more than MRTG.

Whereas with other systems it is not possible to
query just byte statistics on the entire network within the
sample period, the speed of RTG allows us to not only
monitor all devices in the network, but also to monitor
additional objects per interface. For example, we now
monitor the SONET Management Information Base

(MIB) [10] to proactively track transmission problems
and the MPLS MIB [9] to analyze Label Switched Path
(LSP) traffic. Every five minutes, our production RTG
system processes approximately 5000 OIDs in approxi-
mately 60 seconds leaving ample room for future
growth. We suspect that even higher performance is pos-
sible by increasing the number of threads, and hence the
number of queries in flight, beyond the default of five.
Because the performance is more than acceptable, we
are hesitant to increase the number of threads on our
production RTG for fear of overwhelming the network
or the network devices. We note also that the architec-
ture of RTG easily allows separation of the various
components. For instance, multiple instances of the
RT G poller could be distributed throughout the network
while utilizing separate physical machines for MySQL
and web page or report generation to achieve even
greater scalability.

RTG Reports

Our experience shows that using a SQL database
provides an ideal abstract interface to the data. The
available Perl, PHP or C API’s facilitate rapid prototyp-
ing and allow for the design of highly customized
reports and tools. In our case, the engineering group
currently receives a nightly traffic report including total
bytes, packets, maximum rate and average rate for the
backbone routers via a scheduled Perl DBI script. Each

2002 LISA XVI – November 3-8, 2002 – Philadelphia, PA 171

RT G : A Scalable SNMP Statistics Architecture for Service Providers Beverly

morning engineers can peruse this email for interesting
events that may require attention. Listing 2 shows
example output from the Perl traffic summary report

ABC Industries Traffic
Period: [01/01/1979 00:00 to 01/31/1979 23:59]

RateIn RateOut MaxIn MaxOut 95% In 95% Out
Connection Mbps Mbps Mbps Mbps Mbps Mbps

at-1/2/0.111 rtr-1.chi 0.09 0.07 0.65 0.22 0.22 0.13
at-1/2/0.113 rtr-1.dca 0.23 0.19 1.66 1.12 0.89 0.57
at-3/2/0.110 rtr-2.bos 0.11 0.16 0.34 0.56 0.26 0.40

Listing 3: Customer 95th percentile traffic report.

Figure 3: Example year-to-date traffic plot from RTG
generated CSV data.

Figure 4: RTG plots for different time scales with no
loss of resolution.

included in the RTG distribution. Because no averaging
is used, absolute numbers such as the total number of
Gigabytes are shown and the report result for a specific
time period will be the same regardless of when the
report is generated. This consistency is invaluable for
accurate trending and accountability.

Because the data is stored in a relational database,
it is straightforward to generate a traffic report for a

single customer or a subset of customers for any arbi-
trary time period. Listing 3 depicts output from the 95th
percentile Perl report included with the RTG distribu-
tion. This report shows a customer’s usage on three cir-
cuits including their 95th percentile rate, a metric often
used for billing in the telecommunications industry.

Another Perl script we use regularly generates
year-to-date trunk utilization data in comma separated
value (CSV) format, a format that is easily imported
into commercial spreadsheets. These reports are used
by capacity planning groups and presented to upper
management. An example graphic of year-to-date traf-
fic generated by plotting the CSV data in a spreadsheet
is shown in Figure 3.

Figure 5: Eff e c t of differing sampling rates measuring
the same circuit and time period using 5 minute
sampling (top) and 30 second sampling (bottom).

RT G includes a set of PHP web pages that pro-
vide a graphical view of circuit utilization for cus-
tomers and support staff for any arbitrary time period.
A key application included in the RTG distribution for
web pages and traffic visualization is rtgplot. rtgplot is
a C program that utilizes the GD library [2] to generate
plots, similar to those generated by MRTG, in PNG for-
mat from the RTG database. rtgplot provides an
extremely fast on-demand graphical interface to the
data. rtgplot can be used as a stand alone application or
embedded in web pages. A traffic plot can be placed

172 2002 LISA XVI – November 3-8, 2002 – Philadelphia, PA

Beverly RTG: A Scalable SNMP Statistics Architecture for Service Providers

easily in any web page by simply using the
HTML tag with the appropriate arguments. For instance
<IMG SRC="rtgplot.cgi?t1=ifInOctets_2&
t2=ifOutOctets_2&iid=49&begin=1028606400&
end=1028692800&units=bits/s&factor=8&
scalex=yes">

will plot two lines of traffic data from the RTG
MySQL tables ifInOctets_2 and ifOutOctets_2 corre-
sponding to interface id 49 on router id 2 for the 24
hour period 1028606400 to 1028692800 (UNIX sec-
onds since the epoch). The ‘factor’ arg u m e n t multi-
plies the byte data to produce bits per second output on
the plot, while the ‘units’ argument will be displayed
on the vertical axis. The ‘scalex’ argument will auto
adjust the horizontal time axis according to the avail-
able data samples rather than according to the actual
time span specified. Non-continuous data, such as
errors, are plotted using the ‘impulses=yes’ argument.
Different time views, with no resolution decay, of the
same circuit monitored by RTG are shown with rtgplot
output in Figure 4. Note that each plot includes the
absolute volume of bytes as well as the maximum,
average and current traffic rates for the time range.

Finally, the utility of an SNMP tool that is
extremely fast and supports sub-one minute polling is
underscored by a recent example where a customer
OC-3c circuit (155 Mbps) was experiencing perfor-
mance degradation due to packet loss. Quickly examin-
ing the RTG plot for the circuit did not immediately
reveal any congestion. We then configured RTG to poll
this interface every 30 seconds rather than every five-
minutes. Figure 5 shows two plots of this interface over
the same time period. The upper plot is the result from
polling every five minutes whereas the lower plot is the
result from polling every 30 seconds. Clearly the five-
minute polling interval masked the customer’s traffic
bursts that were causing packet loss. While the plot
generated from five-minute samples shows a peak input
rate of 63.4 Mbps, the plot generated from the 30-sec-
ond samples shows a peak input rate of 140.3 Mbps.
Data averaging would mask this type of problem even
further, particularly as the data aged.

Future RTG Development

We are continuing to develop RTG and improve it
based on feedback from the open-source community. In
particular we are looking to increase the robustness of
RT G by employing a buffering mechanism to buffer
SNMP results in case the SQL database is down or
unreachable. In addition, we want to develop function-
ality by which multiple RTG clients can communicate
with one another to provide distributed polling and
redundancy. We recognize that setup and installation of
RT G is difficult and we plan to improve the configura-
tion utilities, documentation, etc. Finally, we have
received feedback about additional uses of RTG includ-
ing implementing multi-grain storage techniques, as
opposed to the traditional fixed sample interval, to

isolate interesting variations in the data. This could
potentially lead to the development of a denial-of-ser-
vice detection or fault management system.

RTG Availability

RTG is developed on Solaris, tested on FreeBSD
and Linux, and should run on a wide variety of other
UNIX platforms by virtue of a GNU autoconf script.
There is no support for Windows platforms. RTG is
available under the terms of the GNU GPL from the
RTG web page hosted on SourceForge, http://rtg.
sourceforge.net. Further information, including docu-
mentation, and mailing lists can be found on the RTG
home page.

Acknowledgments

RTG was inspired by the excellent tools from
Tobias Oetiker, Dave Rand and Jeff Allen. RTG uses,
and is useless without, the MySQL, UCD SNMP, gd,
png and cgilib packages. The author would also like to
thank Kevin Thompson for his support of this work.

Author Biography

Robert Beverly is currently pursing a PhD in
Computer Science at the Massachusetts Institute of
Technology. Most recently he was a senior engineer
with Worldcom’s Advanced Internet Technology
group in Northern Virginia where he was responsible
for the statistics and measurement infrastructure of
several large networks. Prior to Worldcom’s acquisi-
tion, Mr. Beverly worked for MCI Internet Engineer-
ing on the very-high-performance Backbone Network
Service (vBNS). He received his Bachelor’s degree in
Computer Engineering from the Georgia Institute of
Technology in 1996 with high honors. While at Geor-
gia Tech, he worked for several years managing the
campus UNIX systems and then spent two years
working for the Office of Information Technology
managing the campus backbone network. Reach the
author at rbeverly@mit.edu .

References

[1] Allen, J., ‘‘Driving by the rear-view mirror:
Managing a network with cricket, Proceedings of
the First Conference on Network Administration,
April 1999.

[2] Boutell, T., GD graphics library, http://www.
boutell.com/gd .

[3] CAIDA, Internet tools taxonomy, http://www.
caida.org/tools/taxonomy/ .

[4] Case, J. D., M. Fedor, M. Schoffstall, and C.
Davin, Simple Network Management Protocol
(SNMP), RFC 1157, Internet Engineering Task
Force, ftp://ftp.ietf.org/rfc/rfc1157.txt, May 1990.

[5] Leinen, S., Perl 5 SNMP module, an SNMP
client implemented entirely in Perl, http://www.
switch.ch/misc/leinen/snmp/perl .

2002 LISA XVI – November 3-8, 2002 – Philadelphia, PA 173

RTG: A Scalable SNMP Statistics Architecture for Service Providers Beverly

[6] Oetiker, T., RRDtool, http://people.ee.ethz.ch/
˜oetiker/webtools/rrdtool .

[7] Oetiker, T., ‘‘MRTG – The Multi Router Traffic
Grapher,’’ Proceedings of LISA 1998, December
1998.

[8] Oetiker, T. and D. Rand, MRTG, http://people.
ee.ethz.ch/˜oetiker/webtools/mrtg .

[9] Srinivasan, C., A. Viswanathan, and T. Nadeau,
Multiprotocol Label Switching (MPLS) Label
Switch Router (LSR) management information
base, Internet-draft, Internet Engineering Task
Force, ftp://ftp.ietf.org/internet-drafts/draft-ietf-
mpls-lsr-mib-08.txt, January 2002.

[10] Tesink, K., Definitions of Managed Objects for
the SONET/SDH Interface Type, RFC 2558,
Internet Engineering Task Force, ftp://ftp.ietf.org/
rfc/rfc2558.txt, March 1999.

[11] Widenius, M., D. Axmark, and A. Larsson, MySQL
AB, http://www.mysql.com .

174 2002 LISA XVI – November 3-8, 2002 – Philadelphia, PA

