Server Siblings: Identifying Shared IPv4/IPv6 Infrastructure via Active Fingerprinting

Robert Beverly*, Arthur Berger[†]

*Naval Postgraduate School †MIT/Akamai

March 20, 2015

PAM 2015 - 16th Passive and Active Measurement Conference

R. Beverly & A. Berger (NPS)

IPv4/IPv6 Server Siblings

Outline

2 Methodology

R. Beverly & A. Berger (NPS)

IPv4/IPv6 Server Siblings

・ロト ・聞 ト ・ ヨト ・ ヨト

IPv4/IPv6 Siblings

IPv4/IPv6 "Siblings:"

Given a candidate (*IPv*4, *IPv*6) address pair, determine if these addresses are assigned to the same physical machine.

Related IPv6 Research:

- IPv6 adoption, routing, performance [DLHEA12], [CAZIOB14]
- Passive client IPv4/IPv6 sibling associations: e.g. web-bugs, javascript, flash [ZAAHM12]
- DNS server IPv4/IPv6 siblings [BWBC13]

Our work:

- Targeted, active test: <u>on-demand</u> for any given pair
- Infrastructure: finding server siblings

ヘロト 人間 ト イヨト イヨト

IPv4/IPv6 Siblings

IPv4/IPv6 "Siblings:"

Given a candidate (*IPv*4, *IPv*6) address pair, determine if these addresses are assigned to the same physical machine.

Related IPv6 Research:

- IPv6 adoption, routing, performance [DLHEA12], [CAZIOB14]
- Passive client IPv4/IPv6 sibling associations: e.g. web-bugs, javascript, flash [ZAAHM12]
- DNS server IPv4/IPv6 siblings [BWBC13]

Our work:

- Targeted, active test: on-demand for any given pair
- Infrastructure: finding server siblings

R. Beverly & A. Berger (NPS)

IPv4/IPv6 Server Siblings

PAM 2015 3 / 24

イロト イポト イヨト イヨト

Question?

Is IPv6 infrastructure being deployed with separate hardware or by adding IPv6 to existing machines?

Why?

- Adoption:
 - Track IPv6 infrastructure evolution, how deployed

• Bootstrapping:

• IPv6 geolocation, reputation by correlating to IPv4 counterpart

Security:

- Better understand correlated failures
- Lack of IPv6 security, tunnel to circumvent firewalls
- (e.g. an attack on IPv6 resource affecting IPv4 service)

Performance:

Question?

Is IPv6 infrastructure being deployed with separate hardware or by adding IPv6 to existing machines?

Why?

• Adoption:

• Track IPv6 infrastructure evolution, how deployed

• Bootstrapping:

IPv6 geolocation, reputation by correlating to IPv4 counterpart

Security:

- Better understand correlated failures
- Lack of IPv6 security, tunnel to circumvent firewalls
- (e.g. an attack on IPv6 resource affecting IPv4 service)

Performance:

Question?

Is IPv6 infrastructure being deployed with separate hardware or by adding IPv6 to existing machines?

Why?

- Adoption:
 - Track IPv6 infrastructure evolution, how deployed

Bootstrapping:

IPv6 geolocation, reputation by correlating to IPv4 counterpart

Security:

- Better understand correlated failures
- Lack of IPv6 security, tunnel to circumvent firewalls
- (e.g. an attack on IPv6 resource affecting IPv4 service)

Performance:

Question?

Is IPv6 infrastructure being deployed with separate hardware or by adding IPv6 to existing machines?

Why?

- Adoption:
 - Track IPv6 infrastructure evolution, how deployed

Bootstrapping:

IPv6 geolocation, reputation by correlating to IPv4 counterpart

• Security:

- Better understand correlated failures
- Lack of IPv6 security, tunnel to circumvent firewalls
- (e.g. an attack on IPv6 resource affecting IPv4 service)

• Performance:

Question?

Is IPv6 infrastructure being deployed with separate hardware or by adding IPv6 to existing machines?

Why?

- Adoption:
 - Track IPv6 infrastructure evolution, how deployed

Bootstrapping:

IPv6 geolocation, reputation by correlating to IPv4 counterpart

Security:

- Better understand correlated failures
- Lack of IPv6 security, tunnel to circumvent firewalls
- (e.g. an attack on IPv6 resource affecting IPv4 service)

Performance:

Contributions

IPv4/IPv6 Server Sibling Inference, Contributions

- Develop an active IPv4/IPv6 sibling inference measurement technique by extending prior fingerprinting work
- 2 Validate and evaluate technique on ground-truth
- Use technique to survey top Alexa IPv6 capable web servers

Outline

R. Beverly & A. Berger (NPS)

IPv4/IPv6 Server Siblings

æ PAM 2015 6/24

< ≣⇒

Sibling Identification

Targeted, Active Sibling Identification

- Intuition: IPv4 and IPv6 share a common transport-layer (TCP)
- Combine, extend, and reappraise prior TCP fingerprinting work:
 - Coarse-grained: TCP options signature [Nmap]
 - Fine-grained: TCP timestamp clockskew [Kohno 2005]

< < >> < <</p>

Course-Grained Sibling Identification

Course-Grained Sibling Identification

- Presence of TCP options is common-case
- Order and packing of options is implementation dependent, e.g.:
 - Win: <mss, nop, wscale 5, nop, nop, TS, sackOK>
 - FreeBSD: <mss, nop, wscale 3, sackOK, TS>
 - Linux: <mss, sackOK, TS, nop, wscale 4>

• We:

- Strip timestamp value
- Strip MSS value (unreliable, not just IPv4 MSS-20)
- Preserve order, compare between IPv4 and IPv6

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

Fine-Grained Sibling Identification

Fine-Grained Sibling Identification

- TCP timestamp option: "TCP Extensions for High Performance" [RFC1323, May 1992]. Universally supported, enabled by default.
 - Option value: 4 bytes containing current clock
 - TS clock:
 - Value not specified in RFC (only used to detect duplicate segments)
 - ≠ system clock
 - Frequently unaffected by system clock adjustments (e.g. NTP)
- Connect to remote TCP periodically over time, fetch TS
- Fingerprint is TS clock skew or drift

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Examples

TCP Timestamp Clock Skew

Skew-based Fingerprinting Idea:

- Use linear program to find slope of points
- Here, different skews (one negative)
- y = 0.0299x skew (≈ 1.8ms/min, ≈ 15 min/year)

• Then:

- Compare IPv4 and IPv6 slopes
- Siblings if angle less than threshold

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

Examples

Example: Ground Truth Visualization

R. Beverly & A. Berger (NPS)

IPv4/IPv6 Server Siblings

Probing Outcomes

- No options returned: Infrequent, limits to coarse
- Timestamps:
 - Not present: e.g., middlebox, limits to coarse
 - Non-monotonic: (between connections) e.g., load-balancer
 - Random: e.g., BSD's random per-flow offset
 - Monotonic: fine-grained fingerprinting
- For example, raw TCP timestamps:

R. Beverly & A. Berger (NPS)

Methodology

Server Sibling Inference

- Propose and evaluate two algorithms:
 - Options signature and basic timestamp skew (Alg 1)
 - Additional, parameterized logic (Alg 2)
- (See paper for gory algorithm details)
- Test against ground truth
- $\bullet\,$ Periodically probe Alexa IPv4 and IPv6 targets once every ${\sim}3.5\,$ hours for ${\sim}17$ days

Outline

2 Methodology

R. Beverly & A. Berger (NPS)

IPv4/IPv6 Server Siblings

▲ ■ ▶ ■ つへの PAM 2015 14/24

・ロト ・聞 ト ・ ヨト ・ ヨト

Ground Truth Validation

	Hosts	# v4 AS	# v6 AS	Countries	# Option Signatures
Ground Truth	61	34	34	19	13

Ground Truth:

- Friends and family
- Small, but well-distributed: among ASes, countries, and OSes
- $\bullet~$ Permits \sim 1,800 combinations of non-siblings

∃ >

A >

Ground Truth Evaluation

- Ten rounds of testing, forming equal number random (known) non-siblings
- Option signatures alone: ~ 82% accuracy
- Timestamps alone: ~ 91% accuracy
- Combined algorithms perform best on our ground truth
- Note: high precision and specificity, but at cost of more indeterminate predictions

Validation Results

Algorithm	Acc.	Prec.	Recall	Specif.	Unknown
TCP Opts	82.2%	74.1%	98.2%	66.8%	0.0%

A B b A B b

Ground Truth Evaluation

- Ten rounds of testing, forming equal number random (known) non-siblings
- Option signatures alone: ~ 82% accuracy
- Timestamps alone: ~ 91% accuracy
- Combined algorithms perform best on our ground truth
- Note: high precision and specificity, but at cost of more indeterminate predictions

Validation Results

Algorithm	Acc.	Prec.	Recall	Specif.	Unknown
TCP Opts	82.2%	74.1%	98.2%	66.8%	0.0%
Kohno	90.6%	82.3%	97.0%	86.4%	27.8%

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Ground Truth Evaluation

- Ten rounds of testing, forming equal number random (known) non-siblings
- Option signatures alone: \sim 82% accuracy
- Timestamps alone: ~ 91% accuracy
- Combined algorithms perform best on our ground truth
- Note: high precision and specificity, but at cost of more indeterminate predictions

Validation Results

Algorithm	Acc.	Prec.	Recall	Specif.	Unknown
TCP Opts	82.2%	74.1%	98.2%	66.8%	0.0%
Kohno	90.6%	82.3%	97.0%	86.4%	27.8%
Alg 1	94.2%	93.6%	91.4%	96.0%	22.4%
Alg 1&2	97.4%	99.6%	93.1%	99.8%	29.4%

Datasets

	Hosts	# v4 AS	# v6 AS	Countries	# Option Signatures
Alexa embedded	1050	85	80	31	30
Alexa non-CDN	1533	629	575	69	73
Alexa CDN	230	59	55	18	29

Alexa:

- Top 100,000 sites with both A and AAAA records
- Remove duplicate addresses
- Subdivide into:
 - Embedded: IPv4 address encoded into IPv6 address
 - CDN: Geographically dispersed servers supporting domain
 - non-CDN: Remainder
- Well-distributed: among ASes, countries, OSes

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

Alexa Machine-Sibling Inferences

Inference	non-CDN	CDN	Embed
Siblings	816 (53.2%)	55 (23.9%)	978 (93.1%)
Non-Siblings	409 (26.7)	98 (42.6)	31 (3.0)
Unknown	308 (20.0)	77 (33.5)	41 (3.9)
Total	1533 (100%)	230 (100%)	1050 (100%)

• Sibling prevalence: Embedded > non-CDN > CDN

R. Beverly & A. Berger (NPS)

IPv4/IPv6 Server Siblings

Alexa Machine-Sibling Inferences

Inference	non-CDN	CDN	Embed
Siblings	816 (53.2%)	55 (23.9%)	978 (93.1%)
Non-Siblings	409 (26.7)	98 (42.6)	31 (3.0)
Unknown	308 (20.0)	77 (33.5)	41 (3.9)
Total	1533 (100%)	230 (100%)	1050 (100%)

• Surprisingly, 3.0% of embedded are non-siblings

Highlights that addresses alone do not imply siblings!

A >

Alexa Machine-Sibling Inferences

Inference	non-CDN	CDN	Embed
Unknown			
- v4 and v6 missing	196 (12.8%)	6 (2.6%)	26 (2.5%)
- v4 and v6 random	32 (2.1%)	25 (10.9%)	6 (0.6%)

- Load balancers primary source of unknowns:
 - Missing timestamps for 12.8% of non-CDN
 - Operator feedback: missing timestamps due to front-end load balancer
 - Non-monotonic for 19.6% of CDN (inherent load balancing)

Alexa Machine-Sibling Inferences

Inference	non-CDN	CDN	Embed
Unknown			
 v4 and v6 missing 	196 (12.8%)	6 (2.6%)	26 (2.5%)
 v4 and v6 random 	32 (2.1%)	25 (10.9%)	6 (0.6%)
- v4 and v6 non-mono	78 (5.1%)	45 (19.6%)	9 (0.9%)
- v4 or v6 unresp.	2 (0.1%)	1 (0.4%)	0 (0.0%)

Load balancers primary source of unknowns:

- Missing timestamps for 12.8% of non-CDN
- Operator feedback: missing timestamps due to front-end load balancer
- Non-monotonic for 19.6% of CDN (inherent load balancing)

∃ >

Autonomous System (AS) Agreement

- Examine origin AS of routeviews prefixes for addresses
- IPv4 and IPv6 addresses more likely to be in same AS when siblings
- CDN (both sibling and non-sibling) least likely to have addresses in same AS
- 10% of non-CDN and 2.7% of embedded siblings are in different ASes!

Sibling Inference AS Agreement

	Fraction of matching (<i>I</i> ⁴ , <i>I</i> ⁶) ASNs				
Inference	non-CDN	CDN	Embedded		
Siblings	90.0%	83.6%	97.3%		
Non-Siblings	78.2%	51.0%	87.1%		
Unknown	91.6%	62.3%	78.0%		

Autonomous System (AS) Agreement

- Examine origin AS of routeviews prefixes for addresses
- IPv4 and IPv6 addresses more likely to be in same AS when siblings
- CDN (both sibling and non-sibling) least likely to have addresses in same AS
- 10% of non-CDN and 2.7% of embedded siblings are in *different* ASes!

Sibling Inference AS Agreement

	Fraction of matching (I^4, I^6) ASNs				
Inference	non-CDN	Embedded			
Siblings	90.0%	83.6%	97.3%		
Non-Siblings	78.2%	51.0%	87.1%		
Unknown	91.6%	62.3%	78.0%		

Summary

- Integration and refinement of fingerprinting methods to actively test server IPv4/IPv6 sibling relationships
- Evaluation of technique on ground-truth with >97% accuracy and 99% precision
- Survey of Alexa top 100,000 site server sibling relationships
- Even embedded IPv4 addresses do not imply IPv4/IPv6 siblings (or even same AS)

Backup

R. Beverly & A. Berger (NPS)

IPv4/IPv6 Server Siblings

▲ 王 ト 王 つへの PAM 2015 23/24

ヘロト ヘロト ヘヨト

Alexa Machine-Sibling Inferences

Inference	non-CDN	CDN	Embed
Siblings			
 v4/v6 drift match 	816 (53.2%)	55 (23.9%)	978 (93.1%)
Non-Siblings			
- v4 and v6 opt sig diff	229 (14.9%)	14 (6.1%)	22 (2.1%)
 v4 or v6 missing 	70 (4.6%)	11 (4.8%)	7 (0.7%)
- v4 or v6 random	23 (1.5%)	13 (5.7%)	1 (0.1%)
- v4 or v6 non-mono	52 (3.4%)	47 (20.4%)	1 (0.1%)
 v4/v6 drift mismatch 	35 (2.3%)	13 (5.7%)	0 (0.0%)
Unknown			
- v4 and v6 missing	196 (12.8%)	6 (2.6%)	26 (2.5%)
- v4 and v6 random	32 (2.1%)	25 (10.9%)	6 (0.6%)
- v4 and v6 non-mono	78 (5.1%)	45 (19.6%)	9 (0.9%)
- v4 or v6 unresp.	2 (0.1%)	1 (0.4%)	0 (0.0%)
Total	1533 (100%)	230 (100%)	1050 (100%)

R. Beverly & A. Berger (NPS)