

Sundials in the Shade

An Internet-Wide Perspective on ICMP Timestamps

Erik Rye (CMAND) Robert Beverly (NPS)

Passive and Active Measurement Conference March 28, 2019

Background

- ICMP nearly 40 years old! (RFC792)
- 27 ICMP types defined, 13 formally deprecated
- Communicate diagnostic and error information, e.g.:
 - Echo request/reply
 - Time exceeded
 - Destination/Port/Network Unreachable
- ICMP Timestamps:
 - Type 13 (timestamp) and 14 (timestamp reply)

ICMP Timestamps

- Forgotten, but not gone (or deprecated)
- IPv4 only
- Intended uses:
 - Time synchronization (superseded by NTP)
 - One-way delay measurements
- No legitimate use in 2019 but, since not deprecated, devices must (try to) implement!

Related Work

- Anagnostakis, et. al (2003), Mahajan, et. al (2003) use ICMP timestamps to measure one-way delays and diagnose faults
- Kohno, et. al (2005) use clock skew from TCP/ICMP timestamps to fingerprint devices
 - We focus on response behavior, rather than clock skew measurements
- Bucholtz, et. al (2007) investigate clock behavior of 8,000 web servers
 - We probe 2,000x more hosts > 10 years later, not just web servers, and show novel fingerprinting/geo applications

NAVAL POSTGRADUATE SCHOOL

RFC792

 $0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \ 9 \ 10 \ 11 \ 12 \ 13 \ 14 \ 15 \ 16 \ 17 \ 18 \ 19 \ 20 \ 21 \ 22 \ 23 \ 24 \ 25 \ 26 \ 27 \ 28 \ 29 \ 30 \ 31$

type=13/14	code=0	checksum						
i	d	sequence						
orig_ts								
recv_ts								
xmit_ts								

- id/sequence used to correlate replies with requests
- Three 32-bit timestamps encode the number of ms since midnight UTC
 - Originate time the sender sends request
 - Receive time the receiver receives request
 - Transmit time the receiver transmits reply
- If UTC-reference unavailable, hosts can set MSB and use any reference they wish

ICMP Timestamps 101 – RFC 792

*Assuming both machines have correct clock and are RFC792 compliant

Research Questions

- **1. How many** devices on the Internet respond to ICMP timestamp requests?
- 2. How do devices implement ICMP timestamps?
- 3. How can we leverage ICMP timestamps for novel / new measurement insights?

Sundial Methodology

- Probe ISI hitlist 1 IPv4 address per routable /24 (~16 million addresses)
- Vantage points in Boston and San Diego on university networks
- Vantage points are NTP synchronized (stratum 2 or better)
- To each IP, send four different probes to *elicit variety of response* behaviors
 - Standard set origin timestamp correctly, 0 recv/xmit
 - <u>Bad clock</u> intentionally set origin timestamp incorrectly
 - Bad checksum intentionally set chksum incorrectly
 - <u>Duplicate timestamp</u> set origin timestamp correctly, copy value into recv/xmit fields in request
- Id/seq = hash of dest IP + timestamp to detect middlebox tampering

Response Taxonomy

		Request	Response						
Nun	Class	cksum	orig_ts	recv_ts	xmit_ts				
1	Normal	valid	-	\neq xmit_ts, $\neq 0$	$\neq 0$				
2	Jazy	valid	-	= xmit_ts	$\neq 0$				
3	Checksum-Lazy	bad	-	-	-				
4	Stuck	valid	-	const	const				
5	Constant 0	valid	-	0	0				
6	Constant 1	valid	-	1	1				
	Constant LE 1	valid	-	htonl(1)	htonl(1)				
8	Reflection	valid	-	request _{recv_ts}	$request_{\tt xmit_ts}$				
3	Non-UTC	wlid	-	$> 2^{31} - 1$	$> 2^{31} - 1$				
10		valid	-	$ $ recv_ts - orig_ts $ \% (3.6 \times 10^6) < 200 ms$	-				
11	Inttle Endian	valid		$ htonl(recv_ts) - orig_ts < 200 ms$	-				
12	Linux htons() Bug	valid	-	$\%2^{16} = 0$	$\%2^{16} = 0$				
13	Unlnovn	valid	-		-				
Endianness Wide variety of behaviors!									
ΡΔΜ	1 2019				9				

Example – Lazy Replies

- Results from receive timestamp being copied into transmit timestamp (only one time-getting function call) OR
- Receive and transmit timestamps taken within same ms (two time-getting function calls)

Pathologies – Constant O Replies

 About half of hosts exhibiting the constant 0 behavior showed signs of middlebox tampering using *tracebox*, suggesting this is possibly an OS and middlebox behavior

Pathologies – Reflection Replies

- Send both the **standard** and **duplicate timestamp** requests
- Receive/transmit timestamps of reply match receive/transmit timestamps of request
- Must send both requests to distinguish from constant 0

Correctness

- Empirically derive correctness bound from timestamp replies
- Consider receive timestamps within +/- 200ms of originate timestamp as "correct"

Results

Lazy behavior dominates											
Category	Boston	Both	San Diego	Category	Boston	Both	San Diego				
Normal	40,491	19,819	40,363	Stuck	855	849	873				
Lazy	$2,\!111,\!344$	1,899.297	2,112,386	Constant 0	547	546	555				
Checksum-Lazy	28,074	25,365	28,805	Constant 1	200	199	207				
Non-UTC	249,454	211,755	249,932	Constant LE 1	22	19	23				
Reflection	2,325	2,304	2,364	htons() Bug	1,499	665	1,536				
Correct	850,787	802.314	850,133	Timezone	33,317	23,464	33,762				
Correct LE	11,127	5,24	11,290	Unknown	38,495	11,865	32,956				
Correct - MSB	1,048	386	973								
Total					$2,\!194,\!180$	$1,\!934,\!172$	2,189,524				

Majority of timestamps outside 200ms of correct!

~2.2M responses!

Telnet/CWMP Ground Truth

- Characterize behavior of well-known OS (see paper)
 - But, lots of behavior of unknown origin remained
- Many application-layer protocols leak device manufacturer:
 - Telnet banners
 - CPE WAN Management Protocol (CWMP) GET responses
- Leverage IPv4-wide Telnet and CWMP scans from scans.io
- Parse manufacturer strings, IP addresses from data
- Use sundial to classify behavior by manufacturer

Telnet/CWMP Ground Truth

And within manufacturers

Wide variety of behaviors between manufacturers

Application 1: Operating System Fingerprinting

- Linux/*BSD & derivatives
 - Copy recv timestamp into xmit always lazy
- Windows
 - Off when Windows Firewall enabled, lazy little-endian when disabled
- Cisco IOS
 - MSB set (non-UTC) when NTP disabled, lazy/correct when configured

Application 2: Linux htons() Bug

- Linux kernel v3.18 updated with Y2038-compliant timestamps...
- ...but kernel function inet_current_timestamp() erroneously returns htons() rather than htonl()
- So, 3.18 Linux returns timestamps with lower two bytes zeroed in network order
- Error made its way into Android kernel 3.18 as well
- Fixed in subsequent releases
- Allows for fine-grained OS fingerprinting!

Application 3: Coarse-Grained Geo

- Spikes at hour-interval differences from sender's correct UTC-reference
- >90% agreement of timestamp-inferred timezone w/MaxMind GeoLite-2
- Large number of devices in +9 timezone (Japan, South Korea), unclear why

Conclusions

- Despite no modern use, ICMP timestamps widely supported
- Because no applications depend on them, implementation behavior varies wildly
 - Allows for OS fingerprinting, coarse geolocation
- We developed a tool, *sundial*, and behavioral taxonomy to classify responders
- Sundial Zmap module and all data from our study available: <u>https://www.cmand.org/sundial/</u>

Thanks!

Backup

Future Work

- Probe all IPv4 addresses; done, >220M responders!
- Fine-grained OS fingerprinting, e.g., intra-manufacturer behavior
- Uptime: continual measurement of hosts that keep uptime rather than reset at midnight UTC.

#dosattack

From: Lopez, Raymond <<u>Raymond_Lopez3@comcast.com</u>> Date: Wed, Mar 20, 2019 at 2:58 PM Subject: dosattacks To: <u>bauer@mit.edu</u> <<u>bauer@mit.edu</u>> Cc: Wilkerson, Joseph <<u>Joseph_Wilkerson@comcast.com</u>>, Halcomb, Joshua <Joshua_Halcomb@comcast.com>

Hello, my name is Ray and im a communicatons technician at comcast. Just curious why our ip is in your research survey. Ive seen it a few times in our modems so you probably have a big block of IPs we use.

Please remove comcast IPS from your list