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Abstract. Using probabilistic learning, we develop a naive Bayesian
classifier to passively infer a host’s operating system from packet head-
ers. We analyze traffic captured from an Internet exchange point and
compare our classifier to rule-based inference tools. While the host op-
erating system distribution is heavily skewed, we find operating systems
that constitute a small fraction of the host count contribute a majority
of total traffic. Finally as an application of our classifier, we count the
number of hosts masquerading behind NAT devices and evaluate our re-
sults against prior techniques. We find a host count inflation factor due
to NAT of approximately 9% in our traces.

1 Introduction

Previous measurement studies analyzing Internet packet header traces demon-
strate the wealth of information, for instance traffic characteristics and host
behavior, available to a passive monitor. In this work we use simple probabilistic
learning methods to perform a maximum-likelihood inference of a host’s operat-
ing system from packet headers. Drawing upon earlier TCP/IP “fingerprinting”
techniques [1] we exploit the subtle differences in network stack implementa-
tions that uniquely identify each operating system. Whereas previous tools rely
on an exact match from an exhaustive list of TCP settings, we develop a naive
Bayesian classifier that provides a continuous degree of identification confidence
without deep-packet inspection.

Rule-based approaches fail to identify as many as 5% of the hosts in traces
we collect from an Internet exchange point, likely due to users modifying their
TCP parameters or employing stack “scrubbers” [2]. In contrast our classifier
can intelligently disambiguate under uncertainty.

While fingerprinting is often regarded as a security attack, we argue that
our work is motivated by a number of positive and practical applications. Pas-
sively determining operating systems is valuable in intrusion detection systems
[3], serving operating system specific content, providing security against unau-
thorized access, compiling network inventories, building representative Internet
models and measuring NAT (Network Address Translation) [4] deployment.

This paper presents results from using our classifier to measure the distri-
bution of hosts, packets and bytes per operating system in our exchange point
trace captures.



As an application of our classifier we improve upon previous approaches [5]
to infer the frequency and behavior of Internet clients behind NAT devices.
Understanding the prevalence of hosts masquerading behind NAT devices has
important implications [6][7][8] to the Internet address registries, developers of
end-to-end applications and designers of next generation protocols.

The remainder of the paper is organized as follows. We present related work
in Section 2. Section 3 describes our inference algorithm and methods to train
the classifier. In Section 4 we give our measurement results and distribution of
different operating systems. Section 5 details approaches to, and results from,
NAT inference. We conclude with suggestions for further research and a summary
of major findings.

2 Related Work

Several TCP/IP fingerprinting tools exist employing both active and passive
techniques. Active methods involve repeatedly probing a remote host with spe-
cially crafted packets to induce operating-system-unique responses. Passive meth-
ods rely on an ability to observe a remote host’s traffic and identify the machine
based on normal traffic flow. Passive fingerprinting is non-intrusive and unde-
tectable, but requires an acceptable monitoring point. Conversely, active tools
generate traffic, but can be run anywhere in the network.

The most widely used active tool is the freeware nmap [9] program. nmap
identifies a remote host by finding open TCP and UDP ports, sending specially
formed packets and matching the responses to a database of over 450 signatures.

Our research focuses on large-scale measurement using passive fingerprinting.
The freeware pOf tool [1] provided the original impetus for this work. pOf is a
rule-based tool containing approximately 200 signatures gathered by the Inter-
net community. The pOf signatures contain the following fields: IP time to live
(TTL), presence of the IP don’t fragment (DF) bit, initial TCP window size,
SYN packet size and TCP options. Each signature maps distinctive fields of the
IP and TCP header to different operating systems. For each passively observed
TCP SYN packet, pOf searches the signature space for a match. Unfortunately,
we find that pOf fails to identify as many as 5% of the hosts in traces we collect
from an Internet exchange point.

Bellovin presents a technique for counting hosts behind NAT devices by ob-
serving patterns in IP ID sequences [5]. We utilize many of these techniques
when performing our NAT measurement, but find several difficulties which we
discuss in Section 5.

Because of these difficulties, the only Internet-wide measurements of NAT
usage are from a study that attracted clients to a game server [10]. This study
found NAT in use among 17% to 25% of the game playing Internet population.
The study did not attempt to determine the number of machines masquerading
behind each NAT device.



3 Methodology

In this section we detail our inference algorithm, address several practical diffi-
culties and explore different methods of training the classifier.

Passive fingerprinting leverages the fact that different operating systems im-
plement differing TCP/IP stacks, each of which has a unique signature. Even
between versions or patches of an operating system there exist subtle differences
as developers include new features and optimize performance [11].

Our implementation makes decisions based solely on the TTL, DF, window
size and SYN size information which are collectively distinct. The classifier ex-
amines the initial TCP SYN packets, but determines the probabilistic likelihood
of each hypothesis, i.e. operating system, and selects the maximum-likelihood
hypothesis. Thus we always determine a best guess regardless of whether there
is an exact signature match.

Before discussing specifics of our implementation, we briefly explain our pro-
cess of inferring the original TTL of a packet as sent from the source host and
mitigate complicating factors with the initial window size.

The IP TTL is decremented by one at each router along the forwarding path.
Because our monitoring point is inside the network at an arbitrary distance away
from different hosts, a packet’s originating TTL as it was sent from a host must
be inferred from the observed TTL. We use the well-known heuristic of selecting
the next highest power of 2 as the originating TTL. If the observed TTL is
greater than 128 we infer an original TTL of 255 and if less than 32 we infer 32.

The initial TCP window size can be fixed in the case of simple stacks or may
be a function of the MTU (Maximum Transmission Unit) or MSS (Maximum
Segment Size). The MSS is defined as the payload size a packet can carry for the
interface MTU. Determining the MSS is complicated in our implementation as
we assume visibility into only the first 40 bytes of each packet!, thereby excluding
observation of TCP MSS options. In addition, we assume asymmetrical traffic
such that we cannot determine a negotiated MSS. An empirical study of the data
to find the most common largest packet sizes revealed five common MSS values:
1460, 1380, 1360, 796 and 536 bytes. The first four are the result of common
MTUs and 536 bytes is the default MSS [12]. A further complication arises
when the MSS is effectively reduced by the size of the TCP and IP options. We
infer the size of the options by taking the size of the SYN packet minus 40 bytes.
For each of these five common MSS values, and its equivalent with options, we
check if there exists an integer multiple of the window size. If so, the conditional
probability of that window size is used.

We wish to evaluate the probability of each operating system hypothesis H;
given the observed data P(H;|D). Our four observations are: drrr—i1, dw ss=wss;
dsy N=syn, dpr—={0,1}- A prediction is made using all the hypotheses weighted
by their probabilities. Bayes’ rule provides a convenient mechanism to obtain
the posterior probability of each hypothesis from causal data. We employ the

! In fact our exchange point monitor captures only the first 40 bytes



common simplifying strategy of assuming that each piece of data d; € D is
statistically independent to obtain the naive Bayesian classifier:

 P(d;|H;)P(H;
pi|p) = 1171 ;(D)) = M)

Clearly the fields are not independent of each other, but analysis has shown
naive classifiers can perform close to optimal in practice [13]. Note that for clas-
sification, the denominator P(D) is the same for each hypothesis and therefore
does not need to be explicitly computed for comparisons.

We experiment with two methods to train the classifier. In the first we use the
pOf signature file and take all hypotheses prior probabilities P(H;) as uniform
over the hypothesis space. The pOf signatures are the product of a community
effort and are highly accurate.

In our second training method, we collect all TCP SYN packets into a web
server. We correlate each SYN packet with an HTTP log entry that contains an
explicitly stated browser and operating system. To eliminate bias toward any
operating system, we gather logs from a non-technical web server.

Web logs provide an attractive automated method to continually train the
classifier without maintaining and updating a database of signatures. However,
there are two potential sources of error when training the classifier with web logs.
The first source of error is due to hosts connecting through proxies. The web log
entry contains the host’s operating system, but the captured TCP SYN is from
the proxy. Secondly, some browsers provide false information in an attempt to
provide anonymity or ensure compatibility. With a large enough training set,
we maintain that these errors are statistically insignificant. We present measure-
ments comparing results from our classifier trained with signatures and web logs
in the next section.

Our classifier has two main advantages. It gives appropriate probabilistic
weight to the value of each piece of data based on the training set, making it
robust to user-tuned TCP stacks. Secondly, the classifier produces a maximum-
likelihood guess along with a degree of confidence even in the face of incomplete
or conflicting data.

The major limitation of our classifier is evaluating its accuracy without a
large packet trace of known hosts. Traditionally, the performance of a classifier
is measured by taking a known data set, training on some fraction of it and mea-
suring the accuracy of the classifier on the remainder of the data. Unfortunately
no data set is available on which to measure the accuracy of our classifier. We
have a public web page available that captures each visitor’s incoming packets,
makes an inference and allows the user to correct an incorrect inference. We plan
to measure the accuracy of our classifier once we gather a sufficiently large set
of results from our web site.

In lieu of formal verification of the classifier, we gather packet traces from
machines of all major operating systems. In addition to testing the stock TCP
settings, we modify the socket buffer size, turn on window scaling and enable
selective acknowledgments where possible. In many cases the rule-based tool



could not identify our machines with modified stacks. We ensure that our tool
correctly infers all configurations of machines in our test set.

4 Measurement Results

This section gives the results of our tool on Internet traces. We use our clas-
sifier to analyze approximately 38M packets from an hour-long mid-week trace
collected at a United States Internet exchange at 16:00 PST in 2003. Within
the trace, we analyze only the TCP packets which account for approximately
30.7M packets. Understanding the prevalence of operating systems in the wild
allows Internet models to incorporate a realistic distribution of TCP features
and provides insight into potential homogeneity implications, e.g. genetic host
diversity in the face of epidemic network attacks.

For brevity of presentation, we group operating systems into six broad clas-
sifications.? We measure the number of unique hosts of each operating system
type and per-operating system packet and byte distributions. We compare results
from our Bayesian classifier trained with the pOf signatures (denoted Bayesian in
the following tables), the classifier trained with web logs (denoted WT-Bayesian)
and pOf (denoted rule-based).

Recall that our tool classifies the first TCP SYN of the three way hand-
shake, i.e. the source of the host initiating communication. Thus in contrast to
measurements of server operating system popularity [14], our results are mostly
representative of client activity. However we will capture particular server initi-
ated traffic, for instance SMTP.

Table 1 displays the operating system distribution among roughly sixty-
thousand unique hosts in the trace. Windows based operating systems as a group
dominate among all hosts with a greater than 92% share. Although we do not
present the results here as they are not generally applicable, we also classify
traces gathered from our academic department’s border router. By comparison
we find only 40% popularity among Windows operating systems in our depart-
ment’s traffic.

We then measure the number of packets attributable to each operating system
and again cluster the results into broad classes. For each packet, we determine
the operating system of the source based on a prior SYN inference. Surprisingly,
Table 2 shows that as a fraction of total packets, the Linux operating system
contributes substantially: approximately 19% compared to Window’s 77%.

Table 3 depicts the per-operating system distribution of approximately 7.2G
bytes. Unexpectedly, Linux operating systems are the largest traffic contributor,
with an average of over 2MB of traffic per Linux host in the hour measurement
interval. The proportion of byte traffic between Windows and Linux was roughly
equal with other operating systems contributing negligibly.

To understand the large discrepancy between operating system counts and
the traffic contribution due to each operating system, we process the traces to

2 Apple’s OS-X TCP stack is indistinguishable from BSD, so the results for Mac are
under represented, while the BSD results are over represented.



Table 1. Inferred Operating System Distribution (59595 Unique Hosts)

Bayesian| WT-Bayesian|Rule-Based
Operating System| Percent Percent Percent
Windows: 92.6 94.8 92.9
Linux: 2.3 1.6 1.7
Mac: 1.0 2.1 1.0
BSD: 1.6 0.0 1.6
Solaris: 0.4 0.5 0.2
Other: 2.1 1.1 1.0
Unknown: 1.6

Table 2. Inferred Operating System Packet Distribution (30.7 MPackets)

Bayesian|WT-Bayesian|Rule-Based
Operating System| Percent Percent Percent
Windows: 76.9 77.8 77.0
Linux: 19.1 18.7 18.8
Mac: 0.8 1.5 0.8
BSD: 0.8 0.1 1.6
Solaris: 0.7 1.3 0.5
Other: 1.7 0.6 0.2
Unknown: 1.3

Table 3. Inferred Operating System Byte Distribution (7.2 GBytes)

Bayesian|WT-Bayesian|Rule-Based
Operating System| Percent Percent Percent
Windows: 44.6 45.2 44.7
Linux: 52.6 52.3 52.4
Mac: 0.5 0.9 0.5
BSD: 0.7 0.1 1.2
Solaris: 0.7 1.1 0.6
Other: 0.9 0.4 0.1
Unknown: 0.7




find the largest flows. The top ten flows contribute approximately 55% of the
total byte traffic. Of these ten, we classify five as Linux, two as Windows, one as
BSD. The remaining two flows are not classified, and hence do not contribute to
the totals in Table 3, because the monitor did not observe an initial SYN from
the source.

The largest traffic source is a software distribution mirror running Linux
that is continually transferring data with clients and other mirrors. Four Linux
machines continually crawling web pages at a rate of one query every 2 to 3 ms
are among the top ten byte flows. We also find email SMTP servers, web caches
and P2P applications in the ten largest flows. Thus we conclude that Linux is
the largest byte traffic contributor, primarily due to server applications.

5 NAT Inference

Next we describe techniques, including using our tool, to detect the number of
hosts masquerading behind a NAT-enabled device. To provide an unbiased trace
to evaluate different techniques, we create synthetic NAT traces with a known
fraction of masquerading hosts. We evaluate the performance and discrimination
power of existing techniques, such as IP ID pattern matching, and our classifier in
detecting IP masquerading. Finally we present the results of our NAT inference
on the exchange point traces.

5.1 Techniques for Counting NAT Hosts

Previous research toward passively counting hosts behind NAT devices centers
on two methods. The first technique [15] requires a monitor before the client’s
first-hop router, an impossibility for analysis of traces from deep within the
network. By assuming the ability to monitor packets at the client attachment
point, e.g. a switch or aggregation device, the TTL of packets a monitor observes
are not yet decremented by a router and are a standard power of two. For packets
with a TTL exactly one less than expected, this method can guess a NAT device
is present.

Bellovin provides a more sophisticated approach by observing patterns in IP
IDs [5]. Bellovin’s algorithm relies on the IP IDs from individual hosts being
implemented as sequential counters. By building sequences of IDs that match
within reasonable gap and time bounds, one can infer the actual number of
machines in a trace.

However as Bellovin notes, matching sequential IP IDs may fail. The purpose
of the IP ID field is to allow fragmentation and reassembly by guaranteeing a
sufficiently unique number for the lifetime of the packet. There is no defined
semantic to the field and hence no reason why it should be a counter. For exam-
ple, BSD-based operating systems now implement the IP ID as a pseudo-random
number rather than a counter. In addition, if the don’t fragment bit is set, re-
assembly is not necessary and hence some NAT devices reset the IP ID to zero.
Both issues render IP ID sequence matching ineffective.



A few subtleties remain even assuming non-zero, sequential IDs. Sequence
matching actually relies on incorrect NAT behavior: a NAT should rewrite IDs
to ensure uniqueness but often does not. Of most relevance to the data from our
monitoring point, the potential for misidentification increases when monitoring
deep in the network. As the amount of traffic increases, the number of IP stacks
producing IDs starting from a randomly distributed point increases. Hence the
number of ID collisions increases as a function of observation point depth.

5.2 Evaluation of Sequence Matching

In order to evaluate the performance of Bellovin’s method on our traces, we
implement our own version of the algorithm. We maintain separate pools of
normal and byte-swapped sequences since the IP ID counter may be in network
or host byte order. All arithmetic is modulo 2! as follows. The algorithm adds
each new packet to the best matching sequence among the two pools. An ideal
match is a sequence whose most recent ID is one less than the packet’s ID.
A packet’s ID and time must be within prescribed thresholds gaps in order to
match a sequence. If the gap between a new packet’s ID and the last ID of all
sequences is greater than the threshold, or the time gap is too great, we create
a new sequence. After constructing all of the sequences, we coalesce them. We
repeatedly combine sequence pairs with the successively smallest gap up to a
threshold. All of our thresholds are the recommended values based on Bellovin’s
empirical results. Finally, sequences with fewer than 50 packets are discarded.
The total number of sequences remaining in the normal and byte-swapped pools
estimate the number of hosts in the trace.

Because ID collisions overwhelm the algorithm and produce obviously in-
correct results, we take Bellovin’s suggestion and augment the IP ID technique
to discriminate based on IP address. We build, coalesce and prune sequences
separately for each unique address.

To evaluate the performance of our algorithms and their suitability for mea-
suring NAT in our live traffic traces, we create synthetic NAT traffic. We cap-
ture anonymized traffic from the border router of our academic building where
no NAT is present. We then process the trace to reduce the number of unique
addresses by combining the traffic of n addresses into one, where n is the “NAT
inflation factor.”

Using the campus trace of approximately 2.4M packets, we create a synthetic
NAT trace with a NAT inflation factor of 2 so that there is the same traffic as
in the original trace, but half the number of unique hosts. Using per IP address
sequence matching, we obtain a NAT inflation factor of 2.07. Our experimental
result well approximates our control data set and gives merit to the approach.

Finally, we apply Bellovin’s per IP address sequence matching to our Internet
exchange trace. We find an inflation factor of 1.092, lower than our intuitive
sense, but providing an intuition for the lower bound.



5.3 Evaluation of Fingerprint Matching

Next, we explore a second technique to count the number of hosts masquerading
behind NAT devices. We use our classifier to detect and count multiple packet
signatures originating from a single IP address. We assume affects due to DHCP
[16] and dual-boot systems are negligible over the hour long span of our trace.

Again, we validate our scheme against the synthesized NAT trace. Using
the classifier we obtain a NAT inflation factor of 1.22, significantly less than
the correct factor of 2. The per host IP ID sequencing scheme performs closer to
ideal than using the classifier as the discriminator on our control trace. Counting
NAT hosts on the basis of the unique signatures from each IP address is likely to
undercount because the classifier cannot distinguish between multiple machines
running the same operating system.

Nonetheless, the classifier finds a 20% host count increase due to machines
masquerading behind NAT in the synthetic trace, suggesting that it is a useful
metric. Combining several discriminators and techniques, for instance IP address,
operating system and IP ID sequence matching, will likely provide even higher
accuracy in measuring NAT host counts.

The inferred NAT inflation factor using our classifier to distinguish unique
hosts belonging to a single IP address is 1.020. This result, combined with the
9% inflation factor found using ID sequence matching, provides a measurement-
based lower bound to understanding NAT prevalence in the Internet.

6 Future Work

Our classifier currently implements simplistic learning based only on the first
packet in the TCP handshake. A more interesting and challenging problem is
passively identifying the TCP stack variant, e.g. tahoe, and properties of the
connection. Methods similar to our classifier could be used to train and evaluate
packet streams for more complex inferences.

While we have confidence in our results, we require a large known data set to
evaluate and improve the accuracy of our classifier. Once we collect a sufficiently
large set of responses from our public web page that gathers packets and user
responses, we plan to measure error in our classifier.

Finally, passively counting the number of machines using NAT enabled de-
vices to masquerade behind a single address remains an open problem. One
approach we are currently pursuing as an additional data point is measuring
the Gnutella peer-to-peer network. The packet header for Gnutella query hits
contains a “push” bit so machines behind NAT devices can indicate to other
peers that they are not directly reachable. Measuring the prevalence of push
queries provides another method of approximating NAT penetration among one
user group.



7 Conclusions

We presented a statistical learning technique for passive TCP/IP fingerprinting
without deep-packet inspection. Whereas rule-based approaches fail to identify
as many as 5% of the hosts in our traces, our classifier provides a continuous
degree of identification confidence in the face of incomplete data. We evaluated
several approaches to training the classifier, including an automated method with
web logs. Analysis of packet traces from an Internet exchange revealed strong
dominance of commercial operating systems among all hosts. Surprisingly, we
found that the freeware Linux operating system contributes a significant fraction
of the byte and packet traffic.

We experimented with a new technique for determining the number of hosts
masquerading behind NAT devices by leveraging our classifier. While our tech-
nique found many of the additional hosts due to NAT in a synthetic control
data set, existing techniques such as Bellovin’ IP ID sequence matching per-
formed better. Among the hosts in our exchange point trace, we found a NAT
inflation factor of approximately 9% by Bellovin’s method and 2% using our clas-
sifier. Our results provide a measurement-based lower bound to understanding
NAT prevalence in the Internet.
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