Yarrp’ing the Internet: Randomized High-Speed
Active Topology Discovery

Robert Beverly
Naval Postgraduate School
rbeverly@nps.edu

ABSTRACT

Obtaining a “snapshot” of the Internet topology remains
an elusive task. Existing active topology discovery tech-
niques and systems require significant probing time —
time during which the underlying network may experi-
ence transient dynamics. This work considers how ac-
tive probing can gather the Internet topology in min-
utes rather than days. Conventional approaches to ac-
tive topology mapping face two primary speed and scale
impediments: i) per-trace state maintenance; and ii) a
low-degree of parallelism. Based on this observation,
we develop Yarrp (Yelling at Random Routers Progres-
sively), a new traceroute technique designed for high-
rate, Internet-scale probing. Yarrp is stateless, recon-
stituting all necessary information from ICMP replies
as they arrive asynchronously. To avoid overloading
routers or links with probe traffic, Yarrp randomly per-
mutes an input IP x TTL space. We run Yarrp at
100K pps, a rate at which the paths to all IPv4 /24’s
can be mapped in approximately one hour from a sin-
gle vantage point. We compare Yarrp against existing
systems, and present examples of topological dynamics
exposed via the high sampling rates Yarrp enables.

1. INTRODUCTION

Network and security researchers rely on topological
maps of the logical Internet to address problems ranging
from critical infrastructure protection to policy. Pro-
duction active measurement systems that continually
gather and curate Internet topology, e.g. [22, 17], are
thus important to many longitudinal analyses and to
shedding light on network events of interest.

Obtaining IP, router, and provider-level network topolo-

gies has been a continual research focus for more than

This paper is authored by an employee(s) of the United States Government and
is in the public domain. Non-exclusive copying or redistribution is allowed,
provided that the article citation is given and the authors and agency are clearly
identified as its source.

IMC 2016, November 14-16, 2016, Santa Monica, CA, USA
ACM ISBN 978-1-4503-4526-2/16/11...$15.00
DOL: http://dx.doi.org/10.1145/2987443.2987479

two decades [16, 19, 26, 22]. While significant progress
has been made, topology mapping at Internet scale re-
mains a challenge. Both the accuracy of the inferred
network topologies [29], and the speed at which they
can be recovered [12, 6], present obstacles to current
mapping efforts. Although systems that sample paths
at a rate inversely proportional to their stability have
shown promise, even state-of-the-art techniques to pre-
dict path changes are relatively inaccurate [11]. In this
work, we focus on the speed and scale of Internet-wide
active topology mapping.

Given its scale, experience and popular belief dictates
that obtaining even partial Internet topologies via ac-
tive network probing is a time-intensive process. For
instance, CAIDA’s Archipelago (Ark) [17] system uses
dozens of vantage points and at least a day to traceroute
to a single address in each routed /24 TPv4 prefix. A
recent topology cycle gathered by Ark from April, 2016
[8] sent approximately 11M traceroutes from 37 mon-
itors over the course of 31 hours in order to discover
~1M distinct router interfaces, and ~2M links.

We re-examine the assumed fundamental limits of
active topology mapping to consider whether probing
can be performed in minutes rather than hours. Taking
inspiration from recent stateless and randomized high-
speed scanners, e.g. ZMap [13] and masscan [14], we cre-
ate Yarrp (Yelling at Random Routers Progressively).

To facilitate high-probing rates, Yarrp is stateless, re-
constituting all necessary information from replies as
they arrive asynchronously. To avoid overloading routers
or links, Yarrp randomly permutes its input IP x TTL
space when probing. Yarrp is thus well-suited for Internet-
scale studies. Our contributions include:

1. Development of Yarrp, a publicly available tool [5]
that permits rapid active network topology discov-
ery. We run Yarrp at 100K pps to discover more
than 400,000 router interfaces in under 30 minutes.

2. A comparison of Yarrp and CAIDA’s existing pro-
duction topology collection platform, showing re-
call and speed differences.

3. As an application of rapid topology discovery, we
conduct successive topology snapshots separated
by a small time delta and characterize the distri-
bution and causes of observed path differences.

2. BACKGROUND

Traditional traceroute [18] obtains the sequence of
router interface IP addresses along the forward path
to a destination by sending probe packets with varying
time to live (TTL) values and examining the ICMP re-
sponses. By maintaining the transmission timestamp of
each probe, traceroute can report the round trip time
(RTT) from the source to each responsive hop. Modern
traceroute implementations send batches of concurrent
probes to lower tracing time, e.g. Linux defaults to 16
simultaneous probes. In order to match probes to the
ICMP TTL exceeded responses they generate, the probe
must include unique identifiers that are returned as part
of the ICMP quotation [23]. Because the quote is only
required to copy the first 28 bytes of the packet that
induced the expiry message [3], traceroute typically re-
lies on the first 8 bytes of the transport-layer header to
match responses to probes.

While various improvements have been proposed and
implemented, the core behavior of traceroute — and large
scale active topology scanning — remains largely un-
changed. To prevent false inferences due to load-balanced
paths, Augustin et al. created Paris traceroute [2]. To
reduce unnecessary probing, Donnet et al. developed
Doubletree [12], a modified traceroute that begins prob-
ing from a likely path midpoint outward until it reaches
previously discovered hops. Similarly, [6, 4] proposed
several topology primitives empirically shown to reduce
the volume of probing while maintaining or increasing
topological discovery. DTrack [11] and Sibyl [10] seek
to optimize active probing by making predictions over
historical measurements, yet are still constrained by tra-
ditional traceroute techniques.

CAIDA’s production Ark infrastructure [17] uses Scam-

per [21] to perform continual Internet-wide probing [8].
Scamper implements both Doubletree and Paris tracer-
oute, has an open API, can maintain a configurable
probing rate, and can be controlled remotely.

Traceroute was originally designed as a tool for net-
work administrators to diagnose a small number of paths,
not as a means to gather snapshots of the entire Inter-
net topology [18, 19]. Fundamentally, traceroute and
its variants all have two related properties that limit
their scalability and speed. They:

e Maintain state for each outstanding probe sent,
including some identifier and origination time.

e Are sequential, probing all hops along the path
to a destination. While some tools (e.g. scamper)
can traceroute to multiple targets, this parallelism
is path specific.

In contrast, Yarrp is designed to be stateless and ran-
dom — probing different portions of many different paths
simultaneously. This allows Yarrp to send probes at a
high per-packet rate, while spreading the load among
many destination networks to avoid concentrating load
on particular paths, links or routers, thereby avoiding
anomaly alarms or ICMP rate limiting.

3. YARRP DESIGN

The high-level idea of Yarrp is: i) randomization of
the probing order of the domain of network range(s)
and TTLs; and ii) stateless operation, whereby all nec-
essary state is encoded into the probes such that it can
be recovered from the ICMP replies. As with ZMap,
Yarrp uses independent send and receive threads, where
the sender uses raw sockets while the receiver thread is
implemented using libpcap. Yarrp is written in C++
(approximately 2,500 SLOC), is portable to a variety of
UNIX-like platforms, and is publicly available [5].

3.1 Pseudo-random Probing Order

Existing traceroute techniques probe all hops along a
path to a destination in sequence. Instead, we employ a
keyed block cipher to provide a bijection over the input
domain of target IPs and TTLs (D = IPs x TTLs).
This means, for example, that Yarrp may send a probe
to IP address A with TTL = 12, then B with TTL = 3,
then C' with TTL = 20, and so on until the entire space
of TTLs for each target IP is covered. To an outside
observer, the probed addresses appear to be random.

The symmetric RC5 block cipher with a 32-bit block
size is fast and a natural fit for our application'. With
key k, Yarrp encrypts the sequence i = 0,1,...,|D|—1
where bits of each ciphertext C; = RC5 (i) determine
the target IP address and TTL to probe. In this way,
Yarrp randomizes the order of probed (targetI P,TTL).
Yarrp can permute arbitrarily large or small IPv4 ad-
dress and TTL domains, or can permute the order of
specific targets read from a file. Depending on the size
of the domain, we switch between either a prefix-cipher
or cycle-walking cipher, as described in [7].

To facilitate comparison with CAIDA’s 1Pv4 topol-
ogy dataset [8], Yarrp has a mode that probes a ran-
dom address in each IPv4 24-bit subnet — this mimics
the targets selected in a full cycle of CAIDA’s prob-
ing. Here, Yarrp encrypts each i = 0,...,22% — 1 with
key k. For C; = RC5(i), Yarrp probes the IPv4 ad-
dress C;[0:23] % 28 + (C4[0 : 7] + C4[8 : 15] + C;[16 :
23])%256 with TTL C;[24 : 31]. In this fashion, we
permute through the space of 224 possible /24s, and
construct the least-significant octet as a function of the
subnet such that the same random address in each /24
is used as the destination for each TTL.

An advantage of Yarrp’s randomization method is
that the probing work can easily be distributed among
multiple vantage points with negligible coordination or
communication overhead. We discuss distributed Yarrp
as a future enhancement in §5.

3.2 Stateless Operation

Existing traceroute techniques require state to match
ICMP replies to probes. In contrast, Yarrp does not
require state. We overload various fields in the probe

LOther block ciphers could be used; the cryptographic
strength of the cipher is not critical to our application.

) 16) 32

Ver | HL | bsce |€ Len
; ‘ Frag Offset .Send T
P TTL P=TCP Header Checksum Dcksum(Target 1P)
Source IP = prober DSend Elapsed
Destination IP = target Time (ms)
ep Source Port | d_port = 80 DTarget P
Sequence Number

Figure 1: Yarrp encodes information in the IP
and TCP fields of outgoing probe packets in or-
der to permit stateless operation.

packets with specific values such that we can recon-
struct the corresponding probe’s destination, transmis-
sion time, and originating TTL from within the quote
of the ICMP TTL exceeded messages.

Figure 1 depicts the TCP/IP header fields we utilize.
We encode the TTL with which the packet was sent
in the ITPID and the elapsed time in the TCP sequence
number?. We use elapsed time rather than e.g. Unix
time in order to maintain millisecond resolution with
only a 32-bit field. Yarrp can also encode microsecond
resolution, so long as the expected duration of a probing
run is less than 232/1 x 10° ~4300 seconds. The desti-
nation TCP port is fixed to port 80 to facilitate firewall
traversal, while we populate the source TCP port with
the checksum of the target IP address. In this fashion,
we can detect instances where the destination IP ad-
dress is modified enroute, a phenomenon Malone and
Luckie observe in 2% of their results [23].

In order to properly accommodate load-balanced paths,

which are common in the Internet, we ensure that, for a
given destination, certain fields remain fixed for all TTL
probe values. For instance, although the TCP source
port changes, it is a function of the destination IP ad-
dress and therefore will contain the same value for all
probes sent toward the destination. This design allows
us to maintain the benefits of Paris traceroute [2].

When ICMP TTL exceeded messages arrive, we ex-
amine the included quotation to recover the destination
probed, the originating TTL (hop), responding inter-
face at that hop, and compute the RTT by taking the
difference of the packet arrival time and the probe orig-
ination time as encoded in the quoted TCP sequence
number. These values can be computed from the mini-
mum 28 bytes of required quotation [3].

Yarrp can source either TCP SYN or ACK probes.
While SYN probes can permit middlebox traversal, we
use the ACK-only mode to avoid alarms triggered by
large volumes of SYN traffic. We discuss our use of high-
rate TCP ACK probing in §3.5, and outline a means to
use ICMP and UDP probes in future work in §5.

3.3 Challenges

The benefits of Yarrp’s design come with several con-
comitant challenges, namely: i) reconstructing the un-

2[28] proposes that IPID only be used for fragmenta-
tion. Should this become standardized, Yarrp can uti-
lize other fields, e.g., encoding TTL via packet lengths.

—
o
W

Unique Interfaces

-
Y

Figure 2: Distribution of interfaces discovered
across Ark vantage points in a single cycle as a
function of TTL (path depth). The red line in-
dicates the median value among vantage points.

ordered responses into paths, ii) knowing when to stop
probing, and iii) avoiding unnecessary probing.

In following with Yarrp’s stateless nature, ICMP re-
sponses are decoded as they arrive and written sequen-
tially to a structured output file. Each entry in the out-
put file corresponds to an ICMP response. An entry in-
cludes the target IP address, originating TTL, respond-
ing router interface IP address, RTT, and meta-data
such as timestamps, IPID, response TTL, packet sizes,
and DSCP markings. Because of the inherently random
probing, the entries for each hop along a path to a given
destination will be unordered and intermixed with other
responses in the Yarrp output file. We must therefore
reconstruct complete paths by parsing the entire output
file and maintaining state for each destination. While
this is a memory and time-intensive task, the key point
is that it can be performed off-line. In this fashion,
we decouple probing from path reconstruction to per-
mit the probing to be as fast as possible. Included in
the Yarrp distribution [5] is a yrp2warts Python script
that performs this off-line conversion into the standard
warts [21] binary trace format.

A practical consequence of Yarrp’s randomization and
lack of state is that its probing behavior does not de-
pend on the received responses. Thus, Yarrp cannot
stop probing once it reaches the destination or when
the path contains a sequence of unresponsive hops (the
so-called “gap limit”). To better understand the opti-
mal range of TTLs to probe (from the possible space
1-255), we examine the results from a complete cycle of
Ark probing from January, 2016 [8]. We seek to deter-
mine, across each of the Ark vantage points, the number
of unique router interfaces discovered at each TTL.

Figure 2 shows the inter-quartile range of the number
of distinct interfaces found as a function of TTL for each
of the vantage points; the red line in the boxplot dis-
plays the median number of interfaces per TTL among
each vantage point. Because of the Internet’s tree-like

structure, the first few hops reveal only a small number
of interfaces regardless of the destination probed. The
bulk of the interfaces are found between TTLs 10 to
16, with an inflection point around a TTL of 14. The
amount of discoverable topology beyond a TTL of 32 is
negligible (note the log scale y-axis). As a result, Yarrp
defaults to probing TTLs 1 to 32 to minimize unneces-
sary probing while exploring the majority of the space.
For many destinations Yarrp will perform more prob-
ing than traditional traceroute methods. This is both
an advantage and a disadvantage: we show in §4.1 that
discoverable topology exists beyond multiple unrespon-
sive hops (where existing methods terminate early).

3.4 Optimizations

In environments sensitive to probing volume, sev-
eral optimizations can substantially decrease unneces-
sary probing at the expense of maintaining some state.
This subsection discusses optimizations to the base Yarrp
design to enable different tradeoffs.

First, Yarrp can read a BGP routing table of network
prefixes and build a longest-match Patricia trie [25].
When iterating through the entire permuted IPv4 space,
Yarrp can skip destinations that are not routed. Based
on current global BGP routing tables [1], this optimiza-
tion avoids probing approximately 1.5B IP addresses
(35% of the 32-bit space) that are unlikely to return
useful results. Note that the memory required to main-
tain the BGP table is constant during a probing run
(amounting to approximately 300MB during runtime).
In our experiments, these lookups in the Patricia trie
did not prevent Yarrp from running at over 100kpps.

Second, the tree-like structure of the network implies
that the set of interfaces near to the vantage point is
small relative to the universe of router interfaces [12].
In Figure 2 for instance, all of the traces have a sin-
gle first hop in common and orders of magnitude fewer
interfaces at hops 1-3 as compared to hops 13-15. To
avoid rediscovering the same nearby router interfaces
repeatedly, Yarrp can maintain state over the set of re-
sponding local “neighborhood” interface IP addresses at
hops 1 through a run-time configurable ttl,4-pq. For
each TTL in the neighborhood, Yarrp maintains two
timestamps: the last time a probe was sent with that
TTL, and the last time a new interface at that depth
replied. If no new interfaces have been discovered within
the past 7 = 30 seconds of probing, Yarrp skips future
probes at that TTL3. The yrp2warts script can then
stitch together these missing hops. While the amount
of state in neighborhood mode can grown unbounded,
in practice it is small for small ttl,p.nq, While avoiding
substantial over-probing.

330s ensures >10 probes of TTLs 1-8, assuming a bal-
anced binary tree network and 100Kpps probing rate. A
threshold using the number of unique interfaces versus
probes at a given TTL may better facilitate adapting
to different environments without parameterization.

3.5 Ethical Concerns

High-speed probing invariably raises ethical concerns,
as it increases the chance that traffic may be perceived
as abusive. We follow the recommended guidelines for
good Internet citizenship provided in [13] to mitigate
the potential impact of our probing.

First, as described in §3.1, Yarrp’s pseudo-random
probing order is designed to avoid overloading the net-
works it seeks to characterize. Second, Yarrp sends
TCP ACK probes, which have been used in prior topol-
ogy studies [20], and prevent end systems from attempt-
ing to negotiate a TCP connection (in contrast, the
ZMap scanner sends TCP SYN packets). Unfortunately,
Yarrp’s stateless nature implies that multiple probes,
with different TTLs, may reach a single destination, an
effect we analyze in §4.2.

We therefore make an informative web page accessible
via the IP address of our prober, along with instructions
for opting-out. Additionally, the reverse DNS record
name indicates the research nature of the host. In this
initial work, with Yarrp runs of 30 minutes or less, we
did not receive any abuse reports or opt-out requests.

4. RESULTS

This section examines results from running Yarrp on
the Internet. We compare the topological recall against
an existing production system and then analyze the dis-
covery yield (i.e. the amount of new topology discovered
over time). Finally, as an application of Yarrp’s probing
speed, we gather three successive topology snapshotsto
reveal instances of short-lived network dynamics.

4.1 Topological Recall

We empirically verify Yarrp’s topological recall by
evaluating it against scamper [21]. From a single van-
tage point, we probe 67,045 destinations using Yarrp
and scamper. We run scamper in Paris TCP ACK
mode using port 80 in order to mimic Yarrp’s behav-
ior and facilitate an unbiased comparison of topologi-
cal recall between the two probing methods. From the
Yarrp and scamper probing, construct graphs of inter-
face nodes connected by edges when the interfaces ap-
pear in consecutive hops of a path. We ignore anony-
mous interfaces [15] such that the graph may be discon-
nected. Yarrp discovers 57,128 interfaces, 1.3% fewer
than scamper’s 57,866 unique interfaces, and 67,563
edges (0.8% more than scamper). Manual investigation
of the topologies reveals differences mainly attributable
to load-balancing (because scamper and Yarrp use dif-
ferent headers, it is not possible to ensure that they tra-
verse the same paths to destinations) and path changes.
Empirically, our comparison demonstrates Yarrp’s abil-
ity to discover the responsive topology.

Yarrp’s stateless nature implies that it probes all TTLs
from 1 to 32, whereas Ark’s use of scamper ceases prob-
ing after encountering five unresponsive hops in a row.
In the same CAIDA San Diego probing run, 39,613

1.0

06

CDF

041

021

A

H H H H H H
10 =5 0 5 10 15 20 25 30
Path depth difference (Yarrp-Ark)

Figure 3: CDF of highest responding TTL dif-

ference (max(Yarrp)-max(Ark)) for Ark gap-
limited traces (same dests. and vantage point).

0.0

traces stopped due to this gap-limit. For each of these
gap-limit traces, we compute the difference of the high-
est responding TTL hop from Yarrp probing and the
highest responding TTL from the Ark probing. Fig-
ure 3 shows the cumulative distribution of this differ-
ence among the gapped traces; a positive difference
means that Yarrp discovered topology beyond the point
where Ark stopped probing. For ~88% of the traces,
there is no difference. In 8% of the traces, Ark discov-
ers one more hop than Yarrp. However, Yarrp discovers
one additional hop in ~ 6% of the targets, and more
than 5 additional hops in 4% of the cases.

4.2 Discovery Rate

A goal of Yarrp is rapid topological discovery. In this
subsection, we look specifically at the ability to discover
unique router interface addresses rapidly.

On May 10, 2016, we run Yarrp from a Northeast
United States university vantage point at ~ 100kpps
and instruct it to perform the Ark-mode randomized
probing of the globally routed IPv4 /24 prefixes. We
limit Yarrp to this rate, and limit the duration of our
experiment, per prior agreement with the local network
administrator. The physical machine is a multi-core
Intel 15640 processor running at 2.27GHz, with Yarrp
running on an Ubuntu virtual machine allocated a single
core. At this rate, the CPU utilization is ~52%.

We enable the “neighborhood” optimization, as de-
scribed in §3.4, as we are interested in finding as many
distinct router interfaces as possible given the probing
rate. Figure 4 displays the cumulative number of dis-
tinct router interfaces discovered as a function of time.
As a basis of comparison, we also plot the number of
unique interfaces found over time for a single vantage
point (again, using data from the San Diego node of
CAIDA’s continual /24 probing [8] on May 1, 2016).

CAIDA’s San Diego monitor discovers 12,568 unique
interfaces in 1,500 seconds (= 8 per second). By con-
trast, Yarrp discovers 421,162 unique IPv4 interfaces in
the same period, or approximately 280 distinct router

450000

— Yarrp
400000 «+— CAIDA|

350000

300000

250000

200000

150000

100000+

Unique Router Interfaces Discovered

50000+

0

: . : i :
0 200 400 600 800 1000 1200 1400 1600
Seconds

Figure 4: Unique router interface discovery rate:
comparing Yarrp against CAIDA’s routed /24
probing from a single vantage point.

interfaces a second. The number of interfaces found
by Yarrp in less than 30 minutes equates to 42% of all
unique interfaces discovered from all Ark monitors over
the course of probing for more than a day.

Recall that Yarrp decouples probing from topology
reconstruction. Using a commodity 3.1GHz Intel Xeon
processor, our unoptimized, single-threaded Python pro-
gram (yrp2warts.py) converts our unordered high-speed
Yarrp output trace of 6.8M destinations into an ordered
warts-format file in 668 seconds. This empirical obser-
vation serves to provide an estimate of the wall-clock
upper-bound required to obtain output identical to ex-
isting systems. We leave optimizing Yarrp topology re-
construction as future work.

Finally, in consideration of Yarrp’s stateless TCP prob-
ing, we examine the number and types of replies re-
ceived during our probing run. Figure 5 displays the
complementary cumulative distribution of hosts send-
ing one or more non-TTL exceeded replies. We received
approximately 1.2M TCP RST packets. 99.1% of the
hosts that send a TCP RST packet sent 10 or fewer,
indicating that these hosts received 10 or fewer probes.
We received ~95K host unreachable, and =63k com-
munication prohibited ICMP messages. A very small
number of hosts sent thousands of TCP RST packets;
three three IP addresses within Wanadoo French Tele-
com send the majority of all RSTs. As Yarrp never
sends more than 32 probes toward a given destination,
a single IP sending a large number of RSTs is suggestive
of a middlebox.

4.3 Short-Lived Dynamics

As an application of rapid topology discovery, we col-
lect topology snapshots in rapid succession and analyze
their properties and differences in this subsection.

We gather 67,045 target destinations from CAIDA’s
May 1, 2016 topology probing from their San Diego
monitor. Again using the east coast university vantage
point, we run Yarrp to probe TTLs 1-32 for these same
67,045 targets. We run Yarrp at ~ 4000pps and invoke

100

— TCP-RST
RN - - Unreach Net
- Unreach Host
Unreach Port
— Host Prohib
Comm Prohib

¥
4

'
.

7

Complementary Cumulative Fraction Hosts

10-6 H L L
10° 10* 10? 10°
Replies

Figure 5: Number and type of non-TTL ex-
ceeded replies received per-host during large
Yarrp probing run.

Yarrp three times in succession with a minute pause
in-between. In this way, each snapshot takes approxi-
mately 8 minutes to gather, and each is separated by
a minute. The permutation key is the same for each
snapshot, thus the random probing order is identical for
each. We term the snapshots S7,S> and S3 in chrono-
logical order.

The interface-level graph resulting from S; contains
39,968 interfaces and 46,721 edges, while Sy has 40,038
interfaces and 46,773 edges. S3 contains 39,994 inter-
faces and 46, 749 edges. To better understand the differ-
ences between snapshots, we perform a per-target path
comparison. For each target in S7, we compare the dis-
covered path in S; to the path to that same target in
S>. We use the Levenshtein edit distance to measure
the per-target path differences between snapshots. The
edit distance is the minimum number of edits (inser-
tions, substitutions, or deletions of router interfaces).

Note that inter-snapshot differences are not attributable

to per-flow load balancing as Yarrp keeps the packet
header fields which are used for load balancing constant
for the same destination between snapshots (§3.2).

Additionally, to better understand the types of path
changes, we count the frequency of each edit operation
and missing hop substitutions. These missing hop oper-
ations are instances where the path contains a respon-
sive router for a particular TTL for one snapshot, but
no response at that TTL when probing the same des-
tination in a subsequent snapshot. Such missing hops
may be attributable to routers performing ICMP rate
limiting?, or may be due to packet loss.

A deeper analysis of the most frequent missing hops
between S7 and Sy reveals that the large majority (92.2%)
come from the first four hops within the local network
of the vantage point. Specifically, 73% of the missing
hops are due to the router at TTL 3, 18% are due to the
router at TTL 1, and 1% are due to the router at TTL

4While Yarrp sends TCP probes, many routers limit
the rate of ICMP responses they return.

1.00

96 |4
ll?(;l

CDF

094}

002l Edit Distance
Missing Hops

Substitutions

Deletions

0.90
0

1 2 3 4 5 6

Count
Figure 6: Cumulative fraction of measured paths
versus pair-wise path edit distance between suc-
cessive Yarrp topology snapshots.

4. In contrast, the router at TTL 2 always responds,
suggest that some of the local routers implement ICMP
rate limiting while one does not.

Figure 6 displays the results of the edit distance com-
parison between S; and So, ignoring differences due to
the vantage point’s local network (TTL < 4, as de-
scribed above). The paths to approximately 91% of the
destinations are identical between S7 and Ss, while ap-
proximately 6% have a single hop difference. Less than
1% of the destinations show a difference of > 2 hop ed-
its. Separated by the edit operation, ~4% of the paths
have 1 hop differences that are due to missing hops, 1%
are hop deletions, and fewer than 1% are substitutions.

To understand the potential of rapidly collected topol-
ogy snapshots, we manually investigate and highlight a
path exhibiting a significant change between snapshots.
Figure 7 shows, for each of the three snapshots, entirely
different paths toward the destination 131.221.200.245
(in AS 262316). In S, the trace leaves our vantage
point’s local network via AS3356 (Level 3), via AS10578
in Sy (Internet 2 Northeast Gigapop), and AS174 (Co-
gent) in S3. We manually confirm significant routing
churn for the target’s prefix (131.221.200.0/22) evident
in BGP updates archived by Routeviews [1]. During
our snapshot collection, there were 176 BGP updates
involving the target prefix, while there were no BGP up-
dates for the same prefix in the prior 15-minute Route-
views BGP archive.

Similarly, we find short-lived dynamics within the
core of the network in our snapshots. Figure 8 shows
traces toward 129.232.142.175 (AS37153, in South Africa)
traversing Level 3 (AS3356) and AS36351 before reach-
ing AS37153 in S7, then converging on a path via AS37179
rather than AS36351. Again, there are no BGP updates
for 129.232.128.0/17 in the Routeviews archive 15 min-
utes prior, but 217 updates during, our probing.

While the exact cause of this short-lived routing change
is unknown, the key point is that it would not have been
discovered by the existing topology mapping systems.

S1: .. 18.192.9.2 4.53.48.97 4.69.144.80 4.26.0.166 201.48.50.161
S2: .. 18.192.9.2 207.210.142.229 198.71.47.57 * 67.16.148.6 201.48.50.161
S3: .. 18.192.9.2 38.104.186.185 154.54.30.41 154.54.47.30 154.54.11.110

S1: .. 4.69.166.5 212.113.14.82 50.97.19.43 5.10.118.137 159.8.138.4
S2: .. 4.69.166.5 4.69.167.82 50.97.19.43 41.84.12.81 41.66.132.246
S3: .. 4.69.166.5 4.69.167.82 212.187.195.2 41.84.12.81 41.66.132.246

Figure 7: Example of short-lived path dynamics
observed near our vantage point via successive,
rapidly collected topology snapshots.

We further find intra-AS dynamics between paths to the
same destination in our snapshots. These differences
cannot be validated against available BGP updates vis-
ible at Routeviews, but suggest that Yarrp’s data-plane
inferences may be complementary to techniques that
rely on the visibility of dynamics within the control-
plane. We leave a comprehensive analysis of the extent
and duration of these short-lived dynamics exposed by
Yarrp to future work.

5. CONCLUSIONS

Yarrp demonstrates a new technique for Internet-scale
active probing that permits rapid collection of topology
snapshots. Our hope is that Yarrp facilitates analyses
not previously possible. For instance, Yarrp can enable
a detailed longitudinal analysis of short-lived topology
dynamics across the entire Internet in future work.

Yarrp is stable and the code is publicly available [5].
That said, there are several enhancements that would be
valuable additions. First, Yarrp currently only supports
IPv4 probing. Given the vastly larger IPv6 address
space, and relative topological sparsity [24], adding IPv6
support to Yarrp could enable more complete maps of
the IPv6 topology to be gathered. While the stream-
lined IPv6 headers prevent direct application of Yarrp’s

IPv4 header encoding, the full packet quotation in ICMP6

permits more flexibility in recovering state and using
different transport protocols.

Second, while Yarrp sends TCP probes, it is well-
known that using different transport protocols yields
different responses, due to security and policy filter-
ing [20]. Adding ICMP and UDP probing to Yarrp
requires utilizing different transport header fields to en-
code probe information, while maintaining the first four
bytes constant to keep packets on a single load-balanced
path. For UDP we expect to encode time into the length
and checksum fields and include a payload that makes
the checksum correct. For ICMP echo, we can encode
the timestamp into the identifier and sequence number
headers, but must include a payload that produces the
same checksum for every packet toward a target.

Third, Yarrp’s stateless and asynchronous nature im-
plies that a malicious actor could attempt to send bo-
gus responses, while middleboxes are known to mangle
packet headers [9, 23]. In the future, we wish to use
a keyed cryptographic integrity function over multiple
probe values. Instead of a simple checksum on the tar-
get IP address, we will populate the source port with
the value of this keyed integrity check. Yarrp can then

Figure 8: Example of path dynamics observed
within the core of the network.

ensure that it both sent the original probe, and that the
probe was not modified in-flight.

Fourth, while the headers used for load-balancing re-
main consistent for all probes toward a given destina-
tion, the ICMP responses that Yarrp elicits will have

different checksums due to the quotation containing Yarrp’s

timestamp. When a router with equal-cost paths back
to the source must generate an ICMP response, it may
choose a source interface based on the ICMP head-
ers (including the ICMP checksum). Thus, a load-
balancing router at a particular hop may respond with
a different IP address between subsequent Yarrp traces.
In future work we plan to address this subtlety.

Finally, an attractive feature of Yarrp’s design is the
ability to easily randomize and distribute the probing
to multiple vantage points with negligible coordination
and communication overhead. Similar to the rapid scan-
ning worm envisioned by Staniford et al., the permuted
domain can be distributed [27]. While the entire do-
main can be subdivided among vantage points, doing
so causes different vantage points to probe different
TTLs for a given target. Instead, a simple scheme
can distribute the probing while ensuring that all hops
toward a target are probed from a consistent source.
Each of n vantage points permutes the same domain
D = IPsxTTLs. However, the i'th vantage point only
sends a probe for addresses where IP%(n — 1) == 1.
For additional randomness, the IP may be hashed prior
to this check. The potential speed improvement is lin-
early proportional then to the number of vantage points.
Only the values | D], i, and key need be sent to each van-
tage point to distribute the permuted space and achieve
complete randomized coverage. Given our empirical
(and conservative) 100kpps Yarrp rate in this work, we
estimate that it is possible to implement a distributed
Yarrp among /=128 vantage points to traceroute to every
routed IPv4 address (=~ 23! targets) in approximately
one hour. Yarrp may thus facilitate rapid collection of
complete Internet snapshots in the future.

Acknowledgments

We thank Simson Garfinkel and Nick Weaver for ini-
tial discussions, Lance Alt for libcperm, Garrett Woll-
man for network administration, and Priya Mahadevan
for shepherding. ke claffy, Ann Cox, Mark Gondree,
Matthew Luckie, and Justin Rohrer provided invaluable
feedback. This work supported in part by NSF grant
CNS-1213155. Views and conclusions are those of the
authors and should not be interpreted as representing
the official policies or position of the U.S. government
or the NSF.

6.
1]

2]

[10]

[11]

[12]

REFERENCES

University of Oregon RouteViews, 2016.
http://www.routeviews.org.

B. Augustin, X. Cuvellier, B. Orgogozo, F. Viger,

T. Friedman, M. Latapy, C. Magnien, and R. Teixeira.
Avoiding traceroute anomalies with Paris traceroute.
In Proceedings of ACM IMC, pages 153-158, 2006.

F. Baker. Requirements for IP Version 4 Routers.
RFC 1812 (Proposed Standard), June 1995.

G. Baltra, R. Beverly, and G. G. Xie. Ingress Point
Spreading: A New Primitive for Adaptive Active
Network Mapping. In Proceedings of Passive and
Active Network Measurement (PAM), pages 56—66,
Mar. 2014.

R. Beverly. Yarrp, 2016.
https://www.cmand.org/yarrp.

R. Beverly, A. Berger, and G. G. Xie. Primitives for
active Internet topology mapping: toward
high-frequency characterization. In Proceedings of
ACM IMC, pages 165-171, 2010.

J. Black and P. Rogaway. Ciphers with arbitrary finite
domains. In Topics in Cryptology—CT-RSA, pages
114-130. Springer, 2002.

CAIDA. The CAIDA UCSD IPv4 Routed /24
Topology Dataset, 2016. http://www.caida.org/data/
active/ipv4_routed 24 topology_dataset.xml.

R. Craven, R. Beverly, and M. Allman. A
Middlebox-cooperative TCP for a Non End-to-end
Internet. In Proceedings of ACM SIGCOMM, pages
151-162, 2014.

L. Cunha, P. Marchetta, M. Calder, Y.-C. Chiu, B. V.
Machado, A. Pescape, V. Giotsas, H. V. Madhyastha,
and E. Katz-Bassett. Sibyl: a practical internet route
oracle. In 18th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 16), pages
325-344, 2016.

I. Cunha, R. Teixeira, D. Veitch, and C. Diot.
Predicting and tracking internet path changes. ACM
SIGCOMM Computer Communication Review,
41(4):122-133, 2011.

B. Donnet, P. Raoult, T. Friedman, and M. Crovella.
Efficient algorithms for large-scale topology discovery.
ACM SIGMETRICS Performance Evaluation Review,
33(1):327-338, 2005.

Z. Durumeric, E. Wustrow, and J. A. Halderman.
Zmap: Fast internet-wide scanning and its security
applications. In USENIX Security, pages 605-620,
2013.

R. Graham, P. McMillan, and D. Tentler. Mass
Scanning the Internet. In DEF CON 22, 2014.

M. H. Gunes and K. Sarac. Resolving anonymous
routers in Internet topology measurement studies.
INFOCOM, pages 1076-1084, 2008.

B. Huffaker, M. Fomenkov, and k. claffy. Internet
topology data comparison. Cooperative Association for
Internet Data Analysis (CAIDA), 2012.

Y. Hyun and k. claffy. Archipelago measurement
infrastructure, 2015.
http://www.caida.org/projects/ark/.

V. Jacobson. traceroute, 1989.
ftp://ftp.ee.lbl.gov/traceroute.tar.gz.

k. claffy, Y. Hyun, K. Keys, and M. Fomenkov.
Internet mapping: from art to science. In Proceedings
of IEEE Cybersecurity Applications and Technologies
Conference for Homeland Security, Mar. 2009.

20]

21]

(22]

23]

24]

(25]

[26]

27]

(28]

29]

K. Keys, Y. Hyun, M. Luckie, and k. claffy.
Internet-Scale IPv4 Alias Resolution with MIDAR.
Transactions on Networking, 21(2):383-399, Apr 2013.
M. Luckie. Scamper: a scalable and extensible packet
prober for active measurement of the Internet. In
IMC; pages 239245, Nov. 2010.

H. V. Madhyastha, T. Isdal, M. Piatek, C. Dixon,

T. Anderson, A. Krishnamurthy, and

A. Venkataramani. iPlane: An information plane for
distributed services. In Proceedings of USENIX OSDI,
Nov. 2006.

D. Malone and M. Luckie. Analysis of ICMP
quotations. In Proceedings of the 8th Passive and
Active Measurement (PAM) Workshop, Apr. 2007.

J. Rohrer, B. LaFever, and R. Beverly. Empirical
Study of Router IPv6 Interface Address Distributions.
IEEE Internet Computing, July 2016.

K. Sklower. A tree-based packet routing table for
berkeley unix. In USENIX Winter, volume 1991,
pages 93-99, 1991.

N. Spring, R. Mahajan, and D. Wetherall. Measuring
ISP topologies with Rocketfuel. ACM SIGCOMM
Computer Communication Review, 32(4):133-145,
2002.

S. Staniford, V. Paxson, N. Weaver, et al. How to own
the internet in your spare time. In USENIX Security,
pages 149-167, 2002.

J. Touch. Updated Specification of the IPv4 ID Field.
RFC 6864 (Proposed Standard), Feb. 2013.

W. Willinger, D. Alderson, and J. C. Doyle.
Mathematics and the Internet: A source of enormous
confusion and great potential. Notices of the AMS,
56(5), 2009.

